Журнал «Автоматичне зварювання», № 11, 2022, с. 18-27
Проблеми та перспективи дослідження процесів селективного лазерного плавлення матеріалів для аерокосмічної техніки (Огляд)
М.В. Соколовський
ІЕЗ ім. Є.О. Патона НАН України. 03150, м. Київ, вул. Казимира Малевича, 11. E-mail: office@paton.kiev.ua
У даній роботі з метою визначення актуальних напрямків дослідження різних наукових складових процесу селективного лазерного плавлення (SLM), а також технологічних заходів, які впливають на кінцеву структуру, механічні
та експлуатаційні характеристики виготовленої деталі, було проведено літературний огляд матеріалів, присвячених
різним напрямкам дослідження технології SLM. Напрямками наукових робіт, розглянутих у даному огляді, були: дослідження та поглиблення знань щодо впливу енергетичної складової процесу SLM; можливості модифікації процесу
SLM шляхом контролю величини розфокусування лазера; вивчення режимів та методів SLM-обробки, а також кінцевої
мікроструктури зразків; вивчення корозійної стійкості виробів, виготовлених за допомогою SLM. На підставі результатів
літературного аналізу показано проблеми та перспективи вивчення процесів SLM для матеріалів аерокосмічної індустрії,
аргументовано необхідність створення систематизованого комплексного підходу до вивчення складових процесу SLM,
а також поглиблення знань щодо технологічних можливостей його використання. Бібліогр. 46, рис. 6.
Ключові слова: селективне лазерне плавлення (SLM), адитивне виробництво, порошкова металургія, контроль розміру
фокусної плями, стратегія сканування, метали аерокосмічної індустрії.
Надійшла до редакції 30.06.2022
Список літератури
1. Sun, Z., Tan, X., Tor, S., Chua, C. (2018) Simultaneously enhanced
strength and ductility for 3D-printed stainless steel
316L by selective laser melting. NPG Asia Materials, 10(4),
127–136.
2. Wang, Y., Voisin, T., McKeown, J. et al. (2017) Additively
manufactured hierarchical stainless steels with high strength
and ductility. Nature Materials, 17(1), 63–71.
3. Yang, W., Tarng, Y. (1998) Design optimization of cutting
parameters for turning operations based on the Taguchi method.
Journal of Materials Processing Technology, 84(1-3),
122–129.
4. Mukherjee, T., Manvatkar, V., De, A., DebRoy, T. (2017) Dimensionless
numbers in additive manufacturing. Journal of
Applied Physics, 121(6), id.064904.
5. Ion, J., Shercliff, H., Ashby, M. (1992) Diagrams for laser
materials processing. Acta Metallurgica et Materialia, 40(7),
1539–1551.
6. Thomas, M., Baxter, G., Todd, I. (2016) Normalised model-based processing diagrams for additive layer manufacture
of engineering alloys. Acta Materialia, 108, 26–35.
7. Jiang, H., Li, Z., Feng, T. et al. (2019) Factor analysis of
selective laser melting process parameters with normalised
quantities and Taguchi method. Optics & Laser Technology,
119, id.105592.
8. Darvish, K., Chen, Z., Pasang, T. (2016) Reducing lack of fusion
during selective laser melting of CoCrMo alloy: Effect
of laser power on geometrical features of tracks. Materials
& Design, 112, 357–366.
9. Li, Z., Voisin, T., McKeown, J. et al. (2019) Tensile properties,
strain rate sensitivity, and activation volume of additively
manufactured 316L stainless steels. International Journal
of Plasticity, 120, 395–410.
10. Hou, H., Simsek, E., Ma, T. et al. (2019) Fatigue-resistant
high-performance elastocaloric materials made by additive
manufacturing. Science, 366(6469), 1116–1121.
11. Ma, M., Wang, Z., Zeng, X. (2017) A comparison on metallurgical
behaviors of 316L stainless steel by selective laser
melting and laser cladding deposition. Materials Science and
Engineering: A, 685, 265–273.
12. Jiang, H., Li, Z., Feng, T. et al. (2020) Effect of Process Parameters
on Defects, Melt Pool Shape, Microstructure, and
Tensile Behavior of 316L Stainless Steel Produced by Selective
Laser Melting. Acta Metallurgica Sinica (English Letters),
34(4), 495–510.
13. Kurzynowski, T., Gruber, K., Stopyra, W. et al. (2018) Correlation
between process parameters, microstructure and properties
of 316 L stainless steel processed by selective laser
melting. Materials Science and Engineering: A, 718, 64–73.
14. Martin, A., Calta, N., Khairallah, S. et al. (2019) Dynamics
of pore formation during laser powder bed fusion additive
manufacturing. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-10009-2
15. Tang, C., Tan, J., Wong, C. (2018) A numerical investigation
on the physical mechanisms of single-track defects in selective
laser melting. International Journal of Heat and Mass
Transfer, 126, 957–968.
16. Zheng, M., Wei, L., Chen, J. et al. (2021) On the role of energy
input in the surface morphology and microstructure during
selective laser melting of Inconel 718 alloy. Journal of
Materials Research and Technology, 11, 392–403.
17. Zheng, M., Wei, L., Chen, J. et al. (2019) A novel method for
the molten pool and porosity formation modelling in selective
laser melting. International Journal of Heat and Mass
Transfer, 140, 1091–1105.
18. Zheng, M., Wei, L., Chen, J. et al. (2019) Surface morphology
evolution during pulsed selective laser melting: Numerical
and experimental investigations. Applied Surface Science,
496, id.143649.
19. Deng, C., Kang, J., Feng, T. et al. (2018) Study on the Selective
Laser Melting of CuSn10 Powder. Materials, 11(4), 614.
20. Kempen, K. (2015) Expanding the materials palette for Selective
Laser Melting of metals (Ph.D.). KU Leuven University,
Belgium.
21. Wang, L., Wei, Q., Shi, Y. et al. (2011) Experimental Investigation
into the Single-Track of Selective Laser Melting of
IN625. Advanced Materials Research, 233-235, 2844–2848.
22. Yadroitsev, I., Yadroitsava, I., Bertrand, P., Smurov, I. (2012)
Factor analysis of selective laser melting process parameters
and geometrical characteristics of synthesized single tracks.
Rapid Prototyping Journal, 18(3), 201–208.
23. Promoppatum, P., Yao, S., Pistorius, P., Rollett, A. (2017) A
Comprehensive Comparison of the Analytical and Numerical
Prediction of the Thermal History and Solidification Microstructure
of Inconel 718 Products Made by Laser Powder-Bed Fusion. Engineering, 3(5), 685–694.
24. Brandt, M. (2016) Laser Additive Manufacturing: Materials,
Design, Technologies, and Applications. Duxford: Woodhead
Publishing, 259–279.
25. Metelkova, J., Kinds, Y., Kempen, K. et al. (2018) On the
influence of laser defocusing in Selective Laser Melting of
316L. Additive Manufacturing, 23, 161–169.
26. Paraschiv, A., Matache, G., Condruz, M. et al. (2021) The
Influence of Laser Defocusing in Selective Laser Melted IN
625. Materials, 14(13), 34–47.
27. Zhou, C., Hu, S., Shi, Q. et al. (2020) Improvement of corrosion
resistance of SS316L manufactured by selective laser
melting through subcritical annealing. Corrosion Science,
164, id.108353.
28. McLouth, T., Bean, G., Witkin, D. et al. (2018) The effect of
laser focus shift on microstructural variation of Inconel 718
produced by selective laser melting. Materials & Design,
149, 205–213.
29. Laleh, M., Hughes, A., Xu, W. et al. (2020) Unanticipated
drastic decline in pitting corrosion resistance of additively
manufactured 316L stainless steel after high-temperature
post-processing. Corrosion Science, 165, id.108412.
30. Duan, Z., Man, C., Dong, C. et al. (2020) Pitting behavior of
SLM 316L stainless steel exposed to chloride environments
with different aggressiveness: Pitting mechanism induced by
gas pores. Corrosion Science, 167, id.108520.
31. Kong, D., Ni, X., Dong, C. et al. (2018) Heat treatment effect
on the microstructure and corrosion behavior of 316L
stainless steel fabricated by selective laser melting for proton
exchange membrane fuel cells. Electrochimica Acta, 276,
293–303.
32. Trelewicz, J., Halada, G., Donaldson, O., Manogharan, G.
(2016) Microstructure and Corrosion Resistance of Laser
Additively Manufactured 316L Stainless Steel. JOM, 68(3),
850–859.
33. AlMangour, B., Grzesiak, D., Yang, J. (2017) Scanning strategies
for texture and anisotropy tailoring during selective
laser melting of TiC/316L stainless steel nanocomposites.
Journal of Alloys and Compounds, 728, 424–435.
34. Zhao, C., Bai, Y., Zhang, Y. et al. (2021) Influence of scanning
strategy and building direction on microstructure and
corrosion behaviour of selective laser melted 316L stainless
steel. Materials & Design, 209, id.109999.
35. Wang, X., Kang, J., Wang, T. et al. (2019) Effect of Layer-Wise Varying Parameters on the Microstructure and
Soundness of Selective Laser Melted INCONEL 718 Alloy.
Materials, 12(13), id.2165.
36. Strößner, J., Terock, M., Glatzel, U. (2015) Mechanical and
Microstructural Investigation of Nickel-Based Superalloy
IN718 Manufactured by Selective Laser Melting (SLM). Advanced
Engineering Materials, 17(8), 1099–1105.
37. Yi, J., Kang, J., Wang, T. et al. (2021) Microstructure and
mechanical behavior of bright crescent areas in Inconel
718 sample fabricated by selective laser melting. Materials
& Design, 197, id.109259.
38. Wan, H., Zhou, Z., Li, C. et al. (2018) Effect of scanning
strategy on grain structure and crystallographic texture of Inconel
718 processed by selective laser melting. Journal of
Materials Science & Technology, 34(10), 1799–1804.
39. Popovich, V., Borisov, E., Popovich, A. et al. (2017) Functionally
graded Inconel 718 processed by additive manufacturing:
Crystallographic texture, anisotropy of microstructure
and mechanical properties. Materials & Design, 114,
441–449.
40. Amato, K., Gaytan, S., Murr, L. et al. (2012) Microstructures
and mechanical behavior of Inconel 718 fabricated by selective
laser melting. Acta Materialia, 60(5), 2229–2239.
41. Liu, X., Wang, K., Hu, P. (2021) Formability, Microstructure
and Properties of Inconel 718 Superalloy Fabricated by
Selective Laser Melting Additive Manufacture Technology.
Materials, 14(4), 991.
42. Ji, H., Gupta, M., Song, Q. et al. (2021) Microstructure and
machinability evaluation in micro milling of selective laser
melted Inconel 718 alloy. Journal of Materials Research and
Technology, 14, 348–362.
43. Sander, G., Thomas, S., Cruz, V. et al. (2017) On The Corrosion
and Metastable Pitting Characteristics of 316L Stainless
Steel Produced by Selective Laser Melting. Journal of The
Electrochemical Society, 164(6), 250–257.
44. Chao, Q., Cruz, V., Thomas, S. et al. (2017) On the enhanced
corrosion resistance of a selective laser melted austenitic
stainless steel. Scripta Materialia, 141, 94–98.
45. Zhang, Y., Liu, F., Chen, J., Yuan, Y. (2017) Effects of surface
quality on corrosion resistance of 316L stainless steel
parts manufactured via SLM. Journal of Laser Applications,
29(2), 022306.
46. Vignal, V., Voltz, C., Thiébaut, S. et al. (2021) Pitting Corrosion
of Type 316L Stainless Steel Elaborated by the Selective
Laser Melting Method: Influence of Microstructure.
Journal of Materials Engineering and Performance, 30(7),
5050–5058.
Реклама в цьому номері: