Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2017, #2, 11-16 pages
Structure and properties of new high-strength titanium alloy T120, produced by the method of EBM after deformational and heat treatment
S.V. Akhonin1, V.Yu. Belous1, A.Yu. Severin1, V.A. Berezos1, A.N. Pikulin1, A.G. Erokhin2
1E.O. Paton Electric Welding Institute, NASU. 11 Kazimir Malevich Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua
2SE «RPC «Titan» of the E.O.Paton Electric Welding Institute of the NAS of Ukraine». 26, Raketnaya str., Kiev, 03028. E-mail: titan.paton@gmail.com
Technological conditions of thermodeformational treatment of ingots of electron beam melting of the new alloy T120
were determined. The works were carried out for producing experimental series of deformed billets of 150 mm diameter
ingots of the new high-strength alloy. After deformational treatment the microstructure of T120 alloy was examined.
It was determined that the structure of titanium alloy T120, produced by the EBM, consists of equiaxial polyhedral
primary β-grains after rolling, and the intergranular structure is presented by α and β-phases, moreover, the α-phase
has a laminar morphology. It was found that during deformational treatment an oxide and near-surface alphized layer
of up to 0.5 mm thickness under it are formed on the surface of sheets. The effect of heat treatment of deformed semiproducts
on structure and properties of metal was investigated and conditions, which provide optimum combination of
strength and ductility for alloy T120 were established. To attain the maximum ductility, it is rational to subject the T120
alloy billets to annealing at 900 °C, as a result of which the intergranular (α + β)-structure with thickness of α-lamella
of 1.0…1.5 μm is formed. In this case the value of impact strength is
KCV = 12…14 J/cm2 at elongation δ
s = 12 %.
Ref. 9, Tables 2, Figures 5.
Keywords: electron beam melting; titanium alloy; deformational treatment; heat treatment; structure; properties
References
1. Khorev A. I. (2014) Fundamentalnye i prikladnye raboty
po konstruktsionnym titanovym splavam i perspektivnye
napravleniya ikh razvitiya. Tekhnologiya mashinostroyeniya,
11, 5–10. [in Russian].
2. Kolachev B. A., Yeliseyev Yu. S., Bratukhin A. G. i dr. (2001)
Titanovye splavy v svarnykh konstruktsiyakh i proizvodstve
aviadvigateley i aviatsionno-kosmicheskoy tekhnike. Moskva,
Izdatelstvo MAI. [in Russian].
3. Liu B., Liu Y. B., Yang X., Liu Y. (2008) TITANIUM 2008:
development of international titanium industry, preparation
technology and applications. Mater. Sci. Eng. Pow. Metall.,
14(2), p.p. 67–73.
4. Akhonin S. V., Selin R. V., Berezos V. A. et al. (2016) Development
of new high-strength titanium alloy. Sovremennaya
elektrometallurgiya, 4, 22–27. [in Russian].
5. Akhonin S. V., Berezos V. O., Bilous V. Yu. ta in. (2014)
Instytut elektrozvariuvannia im. E. O. Patona NANU,
Vysokomitsnyi tytanovyi splav, Ukraina, Pat. 111002, MPK
S22S 14/00 S22V 34/12, № 201406878. [in Ukrainian].
6. Ilyin A. A., Kolachev B. A., Polkin I. S. (2009) Titanovye
splavy. Sostav, struktura, svoystva. Moskva, VILS, MATI. [in
Russian].
7. Akhonin S. V., Pikulin A. N. Berezos V. A. et al. (2017) Electron
beam melting of new high-strength titanium alloy T120.
Sovremennaya elektrometallurgiya, 1, 15–21. [in Russian].
8. Khorev A. I. (2010) Osnovnye nauchnye i prakticheskiye
napravleniya povysheniya stabilnosti mekhanicheskikh
svoystv (? + ?)-titanovykh splavov vysokoy i sverkhvysokoy
prochnosti. Sb. tr. Mezhdunar. konf. «Ti-2010 v SNG»,
Yekaterinburg. ss. 227–235. [in Russian].
9. GOST 1497–84. Metally. Metody ispytany na rastyazheniye.
[in Russian].