Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2017, #2, 45-52 pages
Plotting of calculation thermokinetic diagrams of anizothermal transformations of titanium alloys on aluminides base
V.A. Kostin, G.M. Grigorenko, S.G. Grigorenko
E.O. Paton Electric Welding Institute, NASU.
11 Kazimir Malevich Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua
Aluminides and alloys on their base are the promising high-strength and scale-resistant materials, demanded for critical
equipment and components, in particular in shipbuilding, aerospace industry. The main method of producing the required
complex of mechanical properties of intermetallic alloys is their thermomechanical treatment, the parameters of which
can be obtained on the base of plotting the thermokinetic diagrams of anisothermal transformations of intermetallic
alloys of Ti–Al system. The obtaining of experimental thermokinetic diagrams of intermetallic alloys is quite difficult.
The aim of the present work was in plotting of a calculation thermokinetic diagram of anisothermal transformations
of intermetallic titanium alloy on the titanium aluminide base. The calculation method was based on using the theory
of multi-component alloys and thermodynamic modeling using the CALPHAD methodology. To solve the problem
of prediction of temperatures of phase transformations in intermetallics of Ti–Al system, the method of a regression
analysis was used. The procedure was developed, with the help of which the thermokinetic diagram of formation of
titanium aluminide Ti
3Al was plotted. The equations of regression for determination of temperatures of beginning the
phase transformations on the diagram of state of the Ti–Al system were suggested. The effect of aluminium content in
intermetallics Ti
3Al on the temperature of beginning the intermetallic formation was determined. It is shown that with
increase in aluminium content in intermetallic Ti
3Al from 10 up to 29 at.% the temperature of beginning the β-Ti>Ti
3Al
transformation is increased from 520 up to 1170
oC. The further increase in aluminium content in intermetallic from 29
up to 40 at.% leads to a negligible reduction in initial temperature of transformation to 1140
oC. The developed method
can be used for the modeling of thermokinetic diagrams of anisothermal transformations in complex titanium alloys,
Ref. 19, Table 1, Figures 5.
Keywords: titanium alloys; intermetallics; titanium aluminides; phase transformations; Gleeble 3800; regression
analysis
References
1. Ilin A. A., Kopachev B. A., Popovkin I. S. (2009) Titanovye splavy. Sostav, struktura, svoystva. Spravochnik. Moskva, VILS-MATI. [in Russian].
2. Kainuma R., Sato J., Ohnuma I., Ishida K. (2005) Phase stability and interdiffusivity of the L l0-based ordered phases in Al-rich portion of the Ti–Al binary system. Intermetallics, 13, 784–791.
https://doi.org/10.1016/j.intermet.2004.12.0283. Sahu P. (2006) Lattice imperfections in intermetallic Ti–Al alloys: an X-ray diffraction study of the microstructure by the Rietveld method. Ibid., 14, 180–188.
https://doi.org/10.1016/j.intermet.2005.05.0044. Lyakisheva N. P. (red.) (1996–2000) Diagrammy sostoyaniya dvoynykh metallicheskikh sistem. Moskva, Mashinostroyeniye. [in Russian].
5. Zhang L. C., Palm M., Stein F., Sauthoff G. (2001) Formation of lamellar microstructures in Al-rich TiAl alloys between 900 and 1100 °C. Intermetallics, 9, 229–238.
https://doi.org/10.1016/S0966-9795(00)00125-46. Barabash O. M., Koval Yu. N. (1986) Kristallicheskaya struktura metallov i splavov. Kiev, Naukova dumka. [in Russian].
7. Hayashi K., Nakano T., Umakoshi Y. (2002) Meta-stable region of Al5Ti3 single-phase in time-temperature transformation (TTT) diagram of Ti–62,5 at. % A1 single crystal. Intermetallics, 10, 771–781.
https://doi.org/10.1016/S0966-9795(02)00058-48. Bannyih O. A., Budberg P. B., Alisova S. P. i dr. (1986) Diagrammy i sostoyaniya dvoynyih i mnogokomponentnyih sistem na osnove zheleza. Metallurgiya. [in Russian].
9. Han X. Q., Fu M. J. (2016) The Superplastic Properties and Microstructures Evolution of High Nb Ti3Al Based Alloy. Materials Science Forum, 838–839, pp. 568–573.
https://doi.org/10.4028/www.scientific.net/MSF.838-839.56810. Saunders N., Miodownik A. P. (1998) A Comprehensive Guide. Cahn R. W. (ed.). CALPHAD — Calculation of Phase Diagrams. Pergamon Materials Series vol. 1. Oxford, Elsevier Science.
11. Fan Z., Tsakiropoulos P., Miodownik A. P. (1994) A generalized law of mixtures. J. Materials Science, vol. 29, 1, 141–150.
https://doi.org/10.1007/BF0035658512. Fan Z. (1996) A microstructural approach to the effective transport properties of multiphase composites. Philosophical Magazine A, 73(6), 1663–1684.
https://doi.org/10.1080/0141861960824300513. Saunders N., Beech J., Jones H. (eds.) (1997) Solidification Processing. Sheffield, University of Sheffield.
14. Boutwell B. A., Thompson R. G., Saunders N. et al. (1996) Superalloys 718, 625, 706 and Various Derivatives. Loria E. A. (ed.). TMS, Warrendale, PA.
15. Akhonin S. V., Belous V. Yu., Muzhychenko A. F. (2009) Calculation of sizes of the weld and HAZ in welding of titanium with a scanning concentrated heasourc. Proc. of the Fourth Int. Conf. on Laser Technologies in Welding and Materials, Katsiveli, Crimea, Ukraine, May 26–29, 2009, pp. 11–13.
16. Akhonin S. V., Belous V. Yu., Muzhichenko A. F., Selin R. V. (2013) Mathematical modelling of structural transformations in HAZ of titanium alloy VT23 during TIG welding. The Paton Welding Journal, 3, 24–27. [in Russian].
17. Saunders N., Li. X., Miodownik A. P., Schille J.-Ph. (2003) Modelling of Casting, Welding and Advanced Solidification Processes. Stefanescu D., Warren J. A., Jolly M. R., Krane M. J. M. (eds.), vol. X, TMS, Warrendale, PA.
18. Saunders N., Li. X., Miodownik A. P., Schille J.-Ph. (2003) Proceedings of the Conference Liquid Metal Processing 2003, Nancy, France, September 21–24.
19. Grigorenko G. M., Kostin V. A. (2013) Prediction of temperatures of phase transformations in high-strength low-alloy steels. Sovremennaya elektrometallurgiya, 1, 33–39. [in Russian].