Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2017, #2, 53-58 pages
Morphology of surface and fine structure of thick carbon films, produced by electron beam evaporation of carbon
Yu.A. Kurapov, L.A. Krushinskaya, V.V. Boretsky
E.O. Paton Electric Welding Institute, NASU.
11 Kazimir Malevich Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua
Presented are the results of investigation of the surface morphology and fine structure of thick (25…50 μm) carbon
films, produced from a vapor phase by using the electron beam technology of evaporation of graphite and subsequent
condensation in vacuum. The structures of carbon films were investigated in a wide range of condensation temperatures
100…1500
oC. The integrated examinations by the methods of scanning and transmission electron microscopy showed
that the substrate temperature (condensation) has a main effect on the carbon condensate formation. With the growth
of condensation temperature the dimensional characteristics of crystallites, forming the carbon film, are increased
from 2…4 up to 20…80 μm. It was found that the internal structure of crystallites within the whole temperature range
is remained almost unchanged and consists of aggregates of 0.015…0.030 ?m size, which have a nanodimensional
structure and consist of clusters of 3…6 nm size. Ref. 12, Figures 6.
Keywords: electron beam deposition; carbon; surface morphology; microstructure; nanomaterials
References
1. Yeletsky A. V. (1997) Uglerodnye nanotrubki. Uspekhi
fizicheskikh nauk, 9, 94–972. [in Russian].
2. Sidorov L. N., Korobov M. V., Zhuravleva L. V. (1985) Massspektralnye
termodinamicheskiye issledovaniya. Moskva,
Izdatelstvo MGU. [in Russian].
3. Sidorov L. N. (1998) Gazovye klastery i fulereny. Sorovsky
obrazovatelny zhurnal, 3, 65–71. [in Russian].
4. Rohlfing E. A., Cox D. M., Kaldor A. (1984) J. Chem. Phys.,
81, 3322.
5. Kroto H. W., Health J. R., O`Brien S. C. et al. (1985) Nature,
318, 162.
6. Shpak A. P., Cheremskoy P. G., Kunitsky Yu. F., Sobol O. V.
(2005) Klasternye i nanostrukturnye materialy. T. 3. Kiev,
Akademperiodika. [in Russian].
7. Rakov E. G. (2000) Metody polucheniya uglerodnykh
nanotrubok. Uspekhi khimii, 1, 41–59. [in Russian].
8. Hsu W. K., Hare J. P., Terrones M. et al. (1995) Nature, 377,
687.
9. Jose-Yacaman M., Miki-Yoshida M., Rendon L., Santiesteban
J. G. (1993) Appl. Phys. Lett, 62, 657.
10. Movchan B. A., Kurapov Yu. A. and Krushinskaya L. A.
(2007) Investigation of a number of regularities of electron
beam evaporation and condensation of carbon. Advances in
Electrometallurgy, 1, 6–8.
11. Kurapov Yu. A. and Movchan B. A. (2007) Electron beam
method of graphite evaporation and production of condensates
free from tungsten impurities. Advances in Electrometallurgy,
3, 16–18.
12. Kurapov Yu.A., Boretsky V.V. (2015) Adhesion of thick carbon films, produced by electron beam evaporation of carbon. Sovremennaya elektrometallurgiya, 4, 47–52. [in Russian].
https://doi.org/10.15407/sem2015.04.07