Eng
Ukr
Rus
Print

2017 №02 (07) DOI of Article
10.15407/sem2017.02.08
2017 №02 (01)

Electrometallurgy Today 2017 #02
Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2017, #2, 53-58 pages

Morphology of surface and fine structure of thick carbon films, produced by electron beam evaporation of carbon

Yu.A. Kurapov, L.A. Krushinskaya, V.V. Boretsky


E.O. Paton Electric Welding Institute, NASU. 11 Kazimir Malevich Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua

Presented are the results of investigation of the surface morphology and fine structure of thick (25…50 μm) carbon films, produced from a vapor phase by using the electron beam technology of evaporation of graphite and subsequent condensation in vacuum. The structures of carbon films were investigated in a wide range of condensation temperatures 100…1500 oC. The integrated examinations by the methods of scanning and transmission electron microscopy showed that the substrate temperature (condensation) has a main effect on the carbon condensate formation. With the growth of condensation temperature the dimensional characteristics of crystallites, forming the carbon film, are increased from 2…4 up to 20…80 μm. It was found that the internal structure of crystallites within the whole temperature range is remained almost unchanged and consists of aggregates of 0.015…0.030 ?m size, which have a nanodimensional structure and consist of clusters of 3…6 nm size. Ref. 12, Figures 6.
Keywords: electron beam deposition; carbon; surface morphology; microstructure; nanomaterials

References

1. Yeletsky A. V. (1997) Uglerodnye nanotrubki. Uspekhi fizicheskikh nauk, 9, 94–972. [in Russian].
2. Sidorov L. N., Korobov M. V., Zhuravleva L. V. (1985) Massspektralnye termodinamicheskiye issledovaniya. Moskva, Izdatelstvo MGU. [in Russian].
3. Sidorov L. N. (1998) Gazovye klastery i fulereny. Sorovsky obrazovatelny zhurnal, 3, 65–71. [in Russian].
4. Rohlfing E. A., Cox D. M., Kaldor A. (1984) J. Chem. Phys., 81, 3322.
5. Kroto H. W., Health J. R., O`Brien S. C. et al. (1985) Nature, 318, 162.
6. Shpak A. P., Cheremskoy P. G., Kunitsky Yu. F., Sobol O. V. (2005) Klasternye i nanostrukturnye materialy. T. 3. Kiev, Akademperiodika. [in Russian].
7. Rakov E. G. (2000) Metody polucheniya uglerodnykh nanotrubok. Uspekhi khimii, 1, 41–59. [in Russian].
8. Hsu W. K., Hare J. P., Terrones M. et al. (1995) Nature, 377, 687.
9. Jose-Yacaman M., Miki-Yoshida M., Rendon L., Santiesteban J. G. (1993) Appl. Phys. Lett, 62, 657.
10. Movchan B. A., Kurapov Yu. A. and Krushinskaya L. A. (2007) Investigation of a number of regularities of electron beam evaporation and condensation of carbon. Advances in Electrometallurgy, 1, 6–8.
11. Kurapov Yu. A. and Movchan B. A. (2007) Electron beam method of graphite evaporation and production of condensates free from tungsten impurities. Advances in Electrometallurgy, 3, 16–18.
12. Kurapov Yu.A., Boretsky V.V. (2015) Adhesion of thick carbon films, produced by electron beam evaporation of carbon. Sovremennaya elektrometallurgiya, 4, 47–52. [in Russian]. https://doi.org/10.15407/sem2015.04.07