Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2020, #3, 24-29 pages
Producing by electron beam melting the ingots of iron alloyed with silicon carbide
S.V. Akhonin1, V.O. Berezos1, A.Yu. Severin1, M.P. Gadzira2, Ya.G. Timoshenko2, N.K. Davidchuk2
1E.O. Paton Electric Welding Institute of the NAS of Ukraine.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2I.M. Frantsevich IPM of the NAS of Ukraine.
3 Krzhizhanivskogo Str., 03142, Kyiv, Ukraine. E-mail: post@ipms.kiev.ua
Abstract
In order to achieve high mechanical characteristics of iron-based material, a modifier of highly-dispersed silicon
carbide compound was used as master alloy that during electron beam melting provides a strengthened by nanoparticles
structure of a material, suitable for further deformation processing. A nanosized powder was synthesized in the form of
solid solution of carbon in silicon carbide, to create nanosized alloying modifiers for iron-based materials. A technology
was developed for producing by electron beam melting iron-based ingots, alloyed by a highly-dispersed silicon
carbide compound. Work was performed on producing 200 mm diameter iron ingots, with addition of 1, 2 and 3 % of
synthesized nanosized alloying modifiers, based on silicon carbide. Thermal deformation processing of the ingots was
conducted. The structure and properties of the produced material were studied. It was established that the produced
materials based on iron with addition of nanosized silicon carbide are characterized by a dispersed size of the grains
and nanosized carbide formations of platelike type. Increase of the concentration of nanosized silicon carbide from 1 to
3 % leads to formation of nanostructured pearlite structure. Ref. 11, Tabl. 3, Fig. 12.
Keywords: iron; silicon carbide; alloying; electron beam melting; chemical composition; deformation processing;
physico-mechanical properties; structure
Received 30.06.2020
References
1. Ershov, G.S., Bychev, O.B. (1982) Physico-chemical principles of rational alloying of steels and alloys. Moscow, Metallurgiya [in Russian].
2. Gusev, A.I., Rempel, A.A. (2001) Nanocrystalline materials. Moscow, Fizmatlit [in Russian].
3. Meyers, M.A., Mishra, A., Benson, D.J. (2006) Mechanical properties of nanocrystalline materials. Progr. Mater. Sci., 51, 427-556.
https://doi.org/10.1016/j.pmatsci.2005.08.0034. Valiev, R.Z., Aleksandrov, I.V. (2007) Bulk nanostructural metallic materials: producing, structure and properties. Moscow, Akademkniga in Russian].
5. Kositsyna, I.I., Sagaradze, V.V., Kopylov, V.I. (1999) Formation of high-strength and high-plastic state in metastable austenitic steels by method of equal channel angular pressing. Fizika Metallov i Metallovedenie, 88(5), 99-104 [in Russian].
6. Korznikov, A.V., Safarov, I.M., Nazarov, A.A., Valiev, R.Z. High strength state in low carbon steel with submicron fibrous structure. Mater. Sci. and Engineering, A, 206, 1, 39-44.
https://doi.org/10.1016/0921-5093(95)09981-67. Gadzira, M., Gnesin, G., Mykhaylyk, O. et al. (1998) Solid solution of carbon in β-SiC. Materials Letters, 35, 277-282.
https://doi.org/10.1016/S0167-577X(97)00263-28. Gadzira, M., Gnesin, G., Mykhaylyk, O., Andreyev, O. (1998) Synthesis and structural peculiarities of nonstoichiometric β-SiC. Diamonds and Related Materials, 7, 1466-1470.
https://doi.org/10.1016/S0925-9635(98)00201-59. Gadzira, N.F., Gnesin, G.G., Mikhaylik, A.A. (2001) Mechanism of formation of carbon solid solution in silicon carbide. Poroshk. Metallurgiya, 9−10, 15-18 [in Russian].
10. Paton, B.E., Trigub, N.P., Akhonin, S.V. (2008) Electron beam melting of refractory and high-reactive metals. Kiev, Naukova Dumka [in Russian].
11. Paton, B.E., Trigub, N.P., Akhonin, S,V., Zhuk, G.V. (2006) Electron beam melting of titanium. Kiev, Naukova Dumka [in Russian].1. Ершов Г.С., Бычев О.Б. (1982) Физико-химические основы рационального легирования сталей и сплавов. Москва, Металлургия.
2. Гусев А.И., Ремпель А.А. (2001) Нанокристаллические материалы. Москва, Физматлит.
3. Meyers, M.A., Mishra, A., Benson, D.J. (2006) Mechanical properties of nanocrystalline materials. Progr. Mater. Sci., 51, 427-556.
https://doi.org/10.1016/j.pmatsci.2005.08.0034. Валиев Р.З., Александров И.В. (2007) Объемные наноструктурные металлические материалы: получение, структура и свойства. Москва, ИКЦ «Академкнига».
5. Косицына И.И., Сагарадзе В.В., Копылов В.И. (1999) Формирование высокопрочного и высокопластичного состояния в метастабильных аустенитных сталях методом равноканально-углового прессования. Физика металлов и металловедение, 88(5), 99-104.
6. Korznikov, A.V., Safarov, I.M., Nazarov, A.A., Valiev, R.Z. High strength state in low carbon steel with submicron fibrous structure. Materials Science and Engineering, A, 206, 1, 39-44.
https://doi.org/10.1016/0921-5093(95)09981-67. Gadzira, M., Gnesin, G., Mykhaylyk, O. et al. (1998) Solid solution of carbon in b-SiC. Materials Letters, 35, 277-282.
https://doi.org/10.1016/S0167-577X(97)00263-28. Gadzira, M., Gnesin, G., Mykhaylyk, O., Andreyev, O. (1998) Synthesis and structural peculiarities of nonstoichiometric b-SiC. Diamonds and Related Materials, 7, 1466-1470.
https://doi.org/10.1016/S0925-9635(98)00201-59. Гадзира Н.Ф., Гнесин Г.Г., Михайлик А.А. (2001) Механизм образования твердого раствора углерода в карбиде кремния. Порошковая металургия, 9−10, 15-18.
10. Патон Б.Е., Тригуб Н.П., Ахонин С.В. (2008) Электронно-лучевая плавка тугоплавких и высокореакционных металлов. Киев, Наукова думка.
11. Патон Б.Е., Тригуб Н.П., Ахонин С.В., Жук Г.В. (2006) Электронно-лучевая плавка титана. Киев, Наукова думка.
Advertising in this issue: