Eng
Ukr
Rus
Print

2022 №03 (08) DOI of Article
10.37434/sem2022.03.01
2022 №03 (02)

Electrometallurgy Today 2022 #03
Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2022, #3, 5-10 pages

Mathematical modeling of the process of dissolution of titanium dioxide particles in the titanium melt

S.V. Akhonin, O.G. Yerokhin


E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine. E-mail: office@paton.kiev.ua

Abstract
mathematical model of the process of dissolution of oxygen-containing inclusions of titanium in titanium alloy melt was constructed, which allows calculation of the dependence of particle dissolution rate on melt temperature. The dynamics of oxygen distribution in α-titanium particles during the dissolution process was established. Time intervals of complete dissolution of oxygen-containing titanium inclusions of different chemical composition and initial dimensions were determined. Ref. 20, Fig. 6.
Keywords: titanium; titanium dioxide; diffusion; dissolution; mathematical modeling

Received 15.07.2022

References

1. (2013) Titanium Metal: Market Outlook to 2018. Sixth Edition, 2013. Roskill Information Services Ltd, USA.
2. Osipenko, A.V. (2014) Development of producing of raw material for titanium alloys from substandard spongy titanium. Eastern-European J. of Enterprise Technologies, 4(5), 28-32. https://doi.org/10.15587/1729-4061.2015.47789
3. Cheng-Lin, Li., Yang Yu, Wen-Jun Ye et al. (2015) Effect of boron addition on microstructure and property of low cost beta titanium alloy. In: TMS 2015, 144th Annual Meeting & Exhibition, 1167-1172. https://doi.org/10.1007/978-3-319-48127-2_141
4. Iliin, A.A., Kolachev, B.A., Polkin, I.S. (2009) Titanium alloys. Composition, structure, properties: Refer. Book. Moscow, VILS-MATI [in Russian].
5. Davydov, S.I., Shvartsman, L.Ya., Ovchinnikov, A.V., Teslevich, S.M. (2006) Some peculiarities of titanium alloying with oxygen. In: Proc. of Int. Conf. on Ti-2006 in CIS (Russia, Suzdal, 21-24 May 2006). Kyiv, Naukova Dumka, 253-257 [in Russian].
6. Akhonin, S.V. (2019) Tendencies for development of special electrometallurgy of titanium in Ukraine. Visnyk NASU, 6, 28-36 [in Ukrainian]. DOI: http://doi.org/10.15407/visn2018.06.028
7. Akhonin, S.V., Pikulin, O.M., Berezos, V.O. et al. (2021) Production of titanium ingots with regulated oxygen content by electron beam melting. Suchasna Elektrometal., 3, 13-18 [in Ukrainian]. https://doi.org/10.37434/tpwj2021.10.08
8. Ameling, A.I., Kostenko, V.I., Kruglenko, M.P., Pap, P.A. (2009) Macrosegregation of oxygen in crystallization of titanium ingots. Sovrem. Elektrometall., 4, 20-24 [in Russian].
9. Khansen, M., Anderko, K. (1962) Structures of binary alloys. Vol. 2. Moscow, Metallurgizdat [in Russian].
10. Bellot, J.P., Mitchell, A. (1994) Hard-alfa particle behaviour in a titanium alloy liquid pool. Light Metalls, 2, 1187-1193.
11. Jarrett, R.N., Reichman, S.H, Broadwell, R.G. (1988) Defect removal mechanisms in hearth melted Ti-6Al-4V. In: Proc. of Sixth World Conf. on Titanium. Les Edititions de Physique, Cedex, France, 593-598.
12. Jarrett, R.N. (1986) Removal of defects from titanium alloys with E.B.C.H.R. In: Proc. of Conf. on Electron Beam Melting and Refining. State of the Art 1986, Bakish Materials Corporation, Englewood, New Jersey, 332-346.
13. Akhonin, S.V. (2001) Mathematical modeling of process of titanium nitride dissolution in titanium melt during electron beam melting. Problemy Spets. Elektrometallurgii, 1, 20-24 [in Russian].
14. Akhonin, S.V., Kruglenko, M.P., Kostenko, V.I. (2011) Mathematical modeling of process of dissolution of oxygen-containing refractory inclusions in titanium melt. Advances in Elektrometallurgy, 1, 13-18.
15. Marchuk, G.I. (1980) Methods of computational mathematics. Moscow, Nauka [in Russian].
16. Kogan, Ya.D., Kolachev, B.A., Levinsky, Yu.V. (1987) Constants of interaction of metals with gases: Refer. Book. Moscow, Metallurgiya [in Russian].
17. Belova, S.B., Kolachev, B.A., Volkov, V.I. (2000) On diffusion of interstitial elements in titanium. Tsvetnaya Metallurgiya, 4, 33-37 [in Russian].
18. Desham, M., Feldman, R., Ler, P. (1976) Oxidation of titanium at high temperature. Physical and mathematical models. Titanium: Materials science and technology. In: Proc. of 3rd Int. Conf. on Titanium (Moscow, 18-21 May 1976). Vol. 2, 159-168 [in Russian].
19. Kofstad P. (1966) High temperature oxidation of metals. New-York, John Wiley and Sons, 169-178.
20. Simon, D., Bulben, Zh.M., Bardol, J. (1976) Study of formation process of thin oxide films and oxygen chemisorption in titsnium by methods of ellipsometry, nuclear activation analysis and microgravimetry. In: Proc. of 3rd Int. Conf. on Titanium: Physical Metallurgy and Technology (Moscow, 18-21 May 1976). Vol. 2, 169-176 [in Russian].

Advertising in this issue: