Eng
Ukr
Rus
Print

2022 №03 (07) DOI of Article
10.37434/sem2022.03.08
2022 №03 (01)

Electrometallurgy Today 2022 #03
Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2022, #3, 53-62 pages

Influence of filler material on the structure and properties of welded joints of high-strength VT19 titanium alloy

S.V. Akhonin, V.Yu. Bilous, R.V. Selin, I.K. Petrychenko, L.M. Radchenko, S.B. Rukhanskyi


E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine. E-mail: office@paton.kiev.ua

Abstract
The infl uence of fi ller material on the properties and structure of joints of VT19 titanium pseudo-β-alloy, produced by tungsten electrode argon-arc welding was studied. It was established that predominantly β-phase in the amount of 60…77 % was present in the weld metal of all the joints of VT19 pseudo-β-alloy. Joints of VT19 alloy produced by argon-arc welding, using VT1-00sv fi ller wire in the amount of 20 %, have the tensile strength values at the level of 965 MPa, and exceed the base metal strength. To produce a homogeneous structure of the joints, it is necessary to use postweld annealing. The impact of annealing at the temperature of 760 °C results in formation in the metal of the joints produced by argon-arc welding of VT19 alloy, of a uniform, homogeneous, fi ne two-phase (α+β)-structure with values of tensile strength of welded joints on the level of 980 MPa. Ref. 17, Tabl. 3, Fig. 9.
Keywords: titanium; titanium alloys; welded joints; pseudo-β-alloy; VT19; welding; tungsten electrode; fl ux; heat treatment; annealing; microstructure; mechanical properties

Received

References

1. Lütjering, G., Williams, J.C. (2003) Titanium (Engineering materials and processes). Berlin, Springer-Verlag. https://doi.org/10.1007/978-3-540-71398-2
2. Boyer, R.R., Williams, J.C. (2011) Developments in research and applications in the titanium industry in the USA. In: Proc. of 12th World Conf. on Titanium. Vol. I., 10-19.
3. Dobrescu, M., Dimitriu, S., Vasilescu, M. (2011) Studies on Ti-Al-Fe low-cost titanium alloys manufacturing, processing and applications. Metalurgia Intern., 16(4), 73.
4. (2003) Titanium and titanium alloys. Ed. by M. Peters, C. Leyens. Wiley-VCH, Weinkeim, Germany.
5. (1994) Materials properties handbook. Titanium alloy. Ed. by R. Boyer, G. Welsch, E.W. Collings. ASM International. The Material Information Society.
6. Khorev, A.I. (2012) Titanium superalloy VT19. Tekhnologiya Mashinostroeniya, 6, 5-8 [in Russian].
7. Moiseev, V.N., Kulikov, F.R., Kirillov, Yu.P. et al. (1978) Welded joints of titanium alloys. Moscow, Metallurgiya [in Russian].
8. D.S.dos Santos, Bououdina, M., Fruchart, D. (2002) Structural and thermodynamic properties of the pseudo-binary TiCr2−xVx compounds with 0.0 ≤ x ≤ 1.2. J. of Alloys and Compounds, 340(1-2), 101-112. https://doi.org/10.1016/S0925-8388(02)00013-0
9. Gavze, A.L., Petrova, E.N., Chusov, S.Y., Yankov, V.P. (2009) Investigation of properties of titanium alloys with mechanically stable beta-structure for body armor application. Techniczne Wyroby Włókiennicze, 17(2-3), 54−57.
10. Akhonin, S.V., Belous, V.Yu., Selin, R.V. (2018) Effect of thermal cycle of TIG welding on structure and properties of pseudo-β-titanium alloys. The Paton Welding J., 8, 28-34. https://doi.org/10.15407/tpwj2018.08.05
11. Gurevich, S.M., Zamkov, V.N., Kushnirenko, N.A. et al. (1980) Search of filler material for welding of (α+β)-titanium alloys. Current problems of welding of nonferrous metals. Kyiv, Naukova Dumka, 314-320 [in Russian].
12. Gurevich, S.M., Zamkov, V.N., Blashchuk, V.E. et al. (1986) Metallurgy and technology of welding of titanium and its alloys. Kyiv, Naukova Dumka [in Russian].
13. Paton, B.E., Zamkov, V.N., Prilutsky, V.P. (1996) Narrow- groove welding proves its worth on thick titanium. Weldimg J., 5, 37-41.
14. Akhonin S.V., Belous V.Yu. (2017) Argon-arc welding of titanium and its alloys using fluxes (Review). The Paton Welding J., 2, 7-12. https://doi.org/10.15407/tpwj2017.02.02
15. Akhonin, S.V., Pikulin, A.N., Berezos, V.A. et al. (2019) Laboratory electron beam unit UE-208M. Sovrem. Elektrometall., 3, 15-22 [in Russian]. https://doi.org/10.15407/sem2019.03.03
16. Akhonin, S.V., Severin, A.Yu., Belous, V.Yu. et al. (2019) Structure and properties of new high-strength titanium alloy T120, produced by the method of EBR after deformational and heat treatment. Ibid., 2, 19-24 [in Russian].
17. Akhonin, S.V., Bilous, V.Yu., Selin, R.V., Petrichenko, I.K. (2020) Heat treatment of high-strength pseudo-β-titanium alloy produced by EBM process and of its welded joints. Suchasna Elektrometall., 1, 14-25 [in Ukrainian]. https://doi.org/10.37434/sem2020.01.02

Advertising in this issue: