Eng
Ukr
Rus
Print

2022 №04 (06) DOI of Article
10.37434/sem2022.04.07
2022 №04 (08)

Electrometallurgy Today 2022 #04
Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2022, #4, 43-48 pages

Structure and mechanical properties of high-temperature titanium alloy of Ti–Al–Zr–Si–Mo–Nb–Sn system after deformation treatment

S.V. Akhonin1, A.Yu. Severin1, O.M. Pikulin1, M.M. Kuzmenko2, L.D. Kulak2, O.M. Shevchenko2


1E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2Frantsevych Institute for Problems of Materials Science of the NAS of Ukraine. 3 Acad. Krzhyzhanovskyi Str., 03142, Kyiv, Ukraine. E-mail: rapid@materials.kiev.ua

Abstract
The structure and mechanical properties of high-temperature titanium alloy of Ti–Al–Zr–Si–Mo–Nb–Sn system after hot deformation treatment by various modes were studied. It was found that metal deformation treatment performed in the upper part of the region of (α+β)-phase existence, ensures an increase of material ductility by almost 30 times, compared with lithium, and high strength values, both at room and at working temperature of 600 °С. Ref. 10, Tabl. 2, Fig. 5.
Keywords: high-temperature titanium alloy; electron beam melting; silicides; mechanical properties; ingot; chemical composition; deformation treatment; structure; phase

Received 06.09.2022

References

1. Paton, B.E., Trigub, N.P., Akhonin, S.B., Zhuk, G.V. (2006) Electron beam melting of titanium. Kyiv, Naukova Dumka [in Russian].
2. Akhonin, S.V., Firstov, S.A., Severin, A.Yu. et al. (2019) Electron beam melting of heat-resistant titanium composites of Ti-Si-Al-Zr-Sn system. Suchasna Elektrometal., 2, 7−12 [in Ukrainian]. https://doi.org/10.15407/sem2019.02.02
3. Wu, T., Beaven, Р, Wagner, R. (1990) The Ti3(Al, Si)-Ti5(Si, Al)3 eutectic reaction in the Ti-Al-Si system. Scripta Metallurgica, 24, 207-212. https://doi.org/10.1016/0956-716X(90)90593-6
4. Shevchenko, O.M., Kulak, L.D., Kuzmenko, M.M., Firstov, S.O. (2020) Influence of zirconium alloying on structure and hardness of hardened cast biocompatible alloy Ti-18Nb- 1Si. Metalofizyka i Novitni Tekhnologii, 42(2), 237-249 [in Ukrainian]. https://doi.org/10.15407/mfint.42.02.0237
5. Firstov, S.O., Kulak, L.D., Kuzmenko, M.M., Shevchenko, O.M. (2018) Alloys of Ti-Al-Zr-Si system for operation at high temperatures. Fiz.-Khimich. Mekhanika Materialiv, 54(6), 30-35 [in Ukrainian]. https://doi.org/10.1007/s11003-019-00264-5
6. Firstov, S.O., Kulak, L.D., Kuzmenko, M.M., Shevchenko, O.M. (2019) Alloys of the Ti-Al-Zr-Si system intended for operation at high temperatures. Materials Sci., 54(6), 783-788. https://doi.org/10.1007/s11003-019-00264-5
7. Akhonin, S.V., Berezos, V.O., Pikulin, O.M. et al. (2022) Producing high-temperature titanium alloys of Ti-Al-Zr-Si-Mo-Nb-Sn system by electron beam melting. Suchasna Elektrometal., 2, 3-9 [in Ukrainian]. https://doi.org/10.37434/tpwj2022.07.07
8. Solonina, O.P., Glazunov, S.G. (1976) Titanium alloys. Heat-resistant titanium alloys. Moscow, Metallurgiya [in Russian].
9. Iliin, A.A., Kolachev, B.A., Polkin, I.S. (2009) Titanium alloys. Composition, structure, properties: Refer. Book. Moscow, VILS-MATI [in Russian].
10. (2000) State diagrams of binary metal systems: Refer. Book,Vol. 3, Book 2. Moscow, Mashinostroenie [in Russian].

Advertising in this issue: