Print

2011 №04 (02) 2011 №04 (04)

The Paton Welding Journal 2011 #04
The Paton Welding Journal, 2011, #4, 14-18 pages  

APPLICATION OF NANOSTRUCTURED INTERLAYERS IN JOINTS OF DIFFICULT-TO-WELD ALUMINIUM-BASE MATERIALS (Review)

D.A. ISHCHENKO


E.O. Paton Electric Welding Institute, NASU, Kiev, Ukraine
 
 
Abstract
The paper deals with the technologies of application of nanostructured interlayers in the form of foils or coatings to improve making permanent joints of difficult-to-weld aluminium-base materials in the processes of diffusion and resistance welding, and well as welding with heating due to exothermal reaction of self-propagating high-temperature synthesis.
 
 
Keywords: diffusion welding, resistance welding, selfpropagating high-temperature synthesis, aluminium alloys, nanostructure, fillers, interlayers, coatings, foils, powders, plastic deformation, exothermal reaction
 
 
Received:                ??.??.??
Published:               28.04.11
 
 
References
1. Shlensky, A.G. (2008) Examination of joint quality in cladding of Al-Zn-Mg system alloys. Tekhnologiya Mashinostroeniya, 8, 20-23.
2. Klubovich, V.V., Kulak, M.M., Samoletov, V.G. (2005) Producing permanent joints of materials using SHS. In: Welding and related technologies: Transact. Minsk.
3. Myagkov, V.G., Zhigalov, V.S., Bykova, L.E. et al. (1998) Self-propagating high-temperature synthesis and solid-phase reactions in two-layer thin films. Zhurnal Tekhnich. Fiziki, 68 (10), 58-62.
4. Shishkin, A.E., Rogovchenko, D.S., Ustinov, A.I. (2009) Evaluation of heat evolution intensity in quick-propagating high-temperature synthesis in Ni/Al multilayer foils. Metallofizika i Nov. Tekhnologii, 31(9), 1179-1188.
5. Denisova, N.F., Starostenkov, M.D., Kholodova, N.B. (2005) Study of formation and stability of new phase nuclei in reactions corresponding to SHS in Ni-Al system. In: Proc. of 9th Int. Sci.-Techn. Conf. on Composites in National Economy (Barnaul, Nov. 2005). Barnaul: AltGTU, 100-105.
6. Rogachev, A.S., Grigoryan, A.E., Illarionova, E.V. et al. (2004) Gas-free burning of bimetallic Ti/Al nanofilms. Fizika Goreniya i Vzryva, 40(2), 45-51.
7. Grigoryan, A.E., Elistratov, N.G., Kovalev, D.Yu. et al. (2001) Autowave propagation of exothermic reactions in thin multilayer films of Ti-Al system. Doklady RAN, 381(3), 368-372.
8. Grigoryan, A.E., Illarionova, E.V., Loginov, B.A. et al. (2006) Structural peculiarities of thin multilayer Ti/Al films for self-propagating high-temperature synthesis. Izvestiya Vuzov. Tsvet. Metallurgiya, 5, 31-36.
9. Rogachev, A.S., Gashon, Zh.K., Grigoryan, A.E. et al. (2006) Formation of crystalline structure of products during heterogeneous reaction in multilayer bimetallic nanosystems. Izvestiya RAN. Physics Series, 70(4), 609-611.
10. Grigorieva, T.F., Korchagin, M.A., Barinova, A.P. et al. (2000) Self-propagating high-temperature synthesis and mechanical fusion in producing monophase highly-refined intermetallics. Materialovedenie, 5, 49-53.
11. Biswas, A., Roy, S.K. (2004) Comparison between the microstructural evolution of two modes of SHS of NiAl: key to a common reaction mechanism. Acta Mater., 52(2), 257-270.
12. Shkodich, N.F., Kochetov, N.A., Sachkova, N.V. (2006) On the influence of mechanical activation on SHS compositions of Ni-Al and Ti-Al. Izvestiya Vuzov. Tsvet. Metallurgiya, 5, 44-50.
13. Kuchuk-Yatsenko, V.S., Shvets, V.I., Sakhatsky, A.G. et al. (2007) Specifics of resistance welding of aluminium alloys with nanostructural aluminium-nickel and aluminium-copper foils. Svarochn. Proizvodstvo, 9, 12-14.
14. Kovalevsky, V.N., Demchenko, E.B., Lopatko, I.G. (2006) Application of nanocoatings in pressure welding of dissimilar materials. Svarka i Rodstv. Tekhnologii, Issue 8, 84-87.
15. Shpak, A.P., Majboroda, V.P., Kunitsky, Yu.A. et al. (2004) Nanolayered fragments in aluminium alloys. Nanosistemy, Nanomaterialy, Nanotekhnologii, 2(2), 681-687.
16. Neumerzhitskaya, E.Yu., Shepelevich, V.G. (2005) Structure, properties and thermal stability of rapidly-solidified foils of aluminium alloy with chromium, nickel and manganese. Perspect. Materialy, 4, 69-73.
17. Karpets, M.V., Firstov, S.O., Kulak, L.D. (2006) Specifics of phase formation in quickly-hardened Al-Fe-Cr alloys in the presence of quasicrystals. Fizyka i Khimiya Tv. Tila, 7(1), 147-151.
18. Gutko, E.S., Shepelevich, V.G. (2005) Investigation of rapidly-solidified foils of binary and ternary aluminium-base alloys containing zinc and magnesium. Fizika i Khimiya Obrab. Materialov, 4, 81-85.
19. Tashlykova-Bushkevich, I.I., Shepelevich, V.G. (2000) Elemental layer-by-layer analysis of component distribution in the volume of rapidly-solidified aluminium low alloys. Ibid., 4, 99-105.
20. Tashlykova-Bushkevich, I.I., Gutko, E.S., Shepelevich, V.G. et al. (2008) Structural and phase analysis of rapidlysolidified Al-Fe alloys. Poverkhnost. Rentg., Sinkhr. i Nejtronnye Issledovaniya, 4, 69-75.
21. Oliker, V.E., Sirovatka, V.L., Timofeeva, I.I. et al. (2005) Influence of properties of titanium aluminides and detonation spraying conditions on phase and structure formation of coatings. Poroshk. Metallurgiya, 9/10, 74-84.
22. Romankov, S.E., Kaloshkin, S.D., Pustov, L.Yu. (2006) Synthesis of titanium-aluminide coatings by the method of mechanical fusion and subsequent annealing on the surface of titanium and aluminium. Fizika Metallov i Metallovedenie, 101(1), 65-73.
23. Perekrestov, V.I., Kosminskaya, Yu.A., Kravchenko, S.N. (2003) Principles of structure formation of condensates of low-supersaturated Cu, Ti, Al and Cr vapors. Metallofizika i Nov. Tekhnologii, 25(6), 725-735.
24. Buzhenets, E.I., Majboroda, V.P., Shpak, A.P. et al. (2004) Structural peculiarities of quasi-crystalline coatings of Al63Cu25Fe12 alloy. Nanosistemy, Nanomaterialy, Nanotekhnologii, 2(4), 1323-1329.
25. Hampshire, J., Kelly, P.J., Teer, D.G. (2003) Tribological properties of co-deposited aluminium-titanium alloy coatings. In: Proc. of 30th Int. Conf. on Metallurgical Coatings and Thin Films (Apr. 28-May 2, 2003, San Diego, Calif.), 392-398.
26. Budilov, V., Kireev, R., Kamalov, Z. (2004) Intermetallic products formed by joint cold cathode vacuum arc sputtering of titanium and aluminium. In: Proc. of 11th Int. Conf. on Rapidly Quenched and Metastable Materials (Oxford, 25-30 Aug. 2002), 656-660.
27. Kurzina, I.A., Bozhko, I.A., Kalashnikov, M.P. et al. (2005) Formation of surface layers containing intermetallic compounds of Ni-Al and Ti-Al systems at high-intensity ion implantation. Perspekt. Materialy, 1, 13-23.
28. Kurzina, I.A., Bozhko, I.A., Kalashnikov, M.P. et al. (2004) High-intensity implantation of aluminium ions into titanium. Metallofizika i Nov. Tekhnologii, 26(12), 1645-1660.