Print

2024 №03 (04) DOI of Article
10.37434/tpwj2024.03.05
2024 №03 (06)

The Paton Welding Journal 2024 #03
The Paton Welding Journal, 2024, #3, 33-39 pages
<

Producing advanced alloys based on titanium aluminides for modern aircraft engine manufacturing

O.V. Ovchinnikov1, S.V. Akhonin2, V.O. Beresos2, A.Yu. Severin2, O.B. Galenkova3, V.G. Shevchenko4

1JSC «Titanium Institute». 180 Sobornyy Prosp., 69035, Zaporizhzhia. E-mail: common@timag.org
2E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
3SE «Ivchenko-Progress». 2 Ivanova Str., 69068, Zaporizhzhia, Ukraine.
4Zaporizhzhia Polytechnic National University. 64 Zhukovskoho str., 69063, Zaporizhzhia, Ukraine. E-mail: rector@zp.edu.ua

Abstract
Work has been performed on optimization of the technological scheme of producing ingots for consumable electrodes with a stable chemical composition and properties. The paper presents the results of studying an ingot of 195 mm diameter from a titanium aluminide-based alloy of Ti–28Al–7Nb–2Mo system, made by double electron beam remelting. Further ingot remelting in the arc furnace was performed, which allowed producing a homogeneous and defectfree ingot of an optimal composition of Ti–28Al–7Nb–2Mo–0.3 (Y, Re, B). The influence of modifying on the structure and properties was studied. It was determined that addition of surfactants promotes refining of the structural components and improvement of the alloy mechanical properties. 17 Ref., 2 Tabl., 9 Fig.
Keywords: electron beam melting, vacuum-arc melting, ingot, titanium aluminide, modifying, structure, mechanical properties

Received: 22.12.2023
Received in revised form: 14.02.2024
Accepted: 03.04.2024

References

1. Clemens, H., Mayer, S. (2016) Intermetallic titanium aluminides in aerospace applications - processing, microstructure and properties. Mater. High Temp., 33, https://doi.org/10.1080/09603409.2016.1163792
2. Chuchuryukin, A.D. (1991) Vacuum in titanium melting. In: Physical metallurgy and processing of titanium and heat-resistant alloys. Moscow, VILS, 159-163 [in Russian].
3. Sobolevskaya, T.D., Gishkina, V.I., Kovalenko, T.A. (2009) Influence of sponge titanium quality on presence of defects in semi-finished products and parts from titanium alloys. Novi Materialy i Tekhnologii v Metalurgii ta Mashynobuduvanni, 2, 50-54 [in Russian].
4. Appel, F., Paul, J.D.H., Oehring, M. (2011) Gammatitanium aluminide alloys: science and Technology. Weinheim, Wiley-VCH VerlagGmbH&Co. KGaA. https://doi.org/10.1002/9783527636204
5. Ivchenko, Z.A., Lunyov, V.V. (2008) Manufacture of shaped castings and consumable electrodes from titanium alloys. Metallovedenie i Termich. Obrab. Metallov, 1, 33-36 [in Russian]. https://doi.org/10.1007/s11041-008-9005-8
6. Ivchenko, Z.A., Lunyov, V.V. (2010) Investigation of properties of castings produced by second remelting electrodes of VT5L alloy of domestic manufacture. Protsessy Litiya, 4, 73-78 [in Russian].
7. Ivchenko, Z.A., Lunyov, V.V. (2010) Manufacture of consumable titanium electrodes by vacuum-arc melting from sponge titanium extruded briquettes. Teoriya i Praktika Metallurgii, 3-4, 21-25 [in Russian].
8. Grigorenko, G.M., Akhonin, S.V., Severin, A.Yu. et al. (2014) Effect of alloying with boron and lanthanum on structure and properties of alloy on base of intermetallic compound TiAl. Sovrem. Elektrometall., 2, 15-20 [in Russian].
9. Akhonin, S.V., Severin, A.Yu., Berezos, V.O. et al. (2022) Producing ingots of Ti-28Al-7Nb-2Mo-2Cr titanium aluminide by electron beam melting. Suchasna Elektrometal., 1, 11-15 [in Ukrainian]. https://doi.org/10.37434/sem2022.01.01
10. Akhonin, S.V., Severin, A.Yu., Berezos, V.O. et al. (2020) Producing large-sized ingots of titanium aluminides by EBM method. Suchasna Elektrometal., 2 , 18-22 [in Ukrainian]. https://doi.org/10.37434/sem2020.02.03
11. Akhonin, S.V., Severin, A.Yu., Berezos, V.O. (2015) Development of technology of adding the refractory alloying elements into alloys on the base of Ti2AlNb intermetallic in electron beam melting. Sovrem. Elektrometall., 3, 12-15 [in Russian].. https://doi.org/10.15407/sem2015.03.02
12. Akhonin, S.V., Severin, A.Yu., Berezos, V.O. (2022) Mathematical modeling of evaporation processes at EBM of alloys based on titanium aluminide of Ti-Al-Nb-Cr-Mo alloying system. Suchasna Elektrometal., 2 , 10-16 [in Ukrainian]. https://doi.org/10.37434/sem2022.02.02
13. Akhonin, S.V., Pikulin, A.N., Berezos, V.A. et al. (2019) Laboratory electron beam unit UE-208M. Sovrem. Elektrometall., 3, 15-22 [in Russian]. DOI: http://dx.doi.org/10.15407/sem2019.03.03 https://doi.org/10.15407/sem2019.03.03
14. Akhonin, S.V., Gorislavets, Yu.M., Glukhenkiy, A.I. et al. (2019) Modeling hydrodynamic and thermal processes in the mould in cold-hearth electron beam melting. Suchasna Elektrometal., 4 , 9-17 [in Ukrainian]. https://doi.org/10.15407/sem2019.04.02
15. Ovchinnikov, A.V., Teslevich, S.M., Tizenberg, D.L., Efanov, V.S. (2019) Technology of melting ingots of cobalt alloy by the arc remelting method. Sovrem. Elektrometall., 1, 23-27 [in Russian]. https://doi.org/10.15407/sem2019.01.03
16. Ovchynnykov, O.V., Kapustian, O.E. (2020) Technology for smelting zirconium alloy ingots by vacuum arc remelting with a non-consumable electrode in a skull furnace. Suchasna Elektrometal., 4, 32-38 [in Ukrainian]. https://doi.org/10.37434/sem2020.04.06
17. Firstov, S.A., Gornaya, I.D., Podrezov, Yu.N. et al. (2018) Properties of alloys on titanium aluminide γ-TiAl/α2-Ti3Al base at complex alloying. Sovrem. Elektrometall., 3, 32-38 [in Russian]. https://doi.org/10.15407/sem2018.03.05