The Paton Welding Journal, 2025, #3, 3-12 pages
Determination of the quantitative phase composition of the metal of welded joints of high-alloy steels, including duplex steels
G.V. Fadeeva1, S.Yu. Maksymov1, Chuanbao Jia2, D.V. Vasiliev1, A.A. Radzievska1
1E.O. Paton Electric Welding Institute of the NASU.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: maksimov@paton.kiev.ua
2MOE Key Lab for Liquid-Solid Structure Evolution and Materials Processing, Institute of Materials
Joining, Shandong University, Jinan 250061
Abstract
The article considers the main techniques and methods available today for quantitative determination of the phase composition
of metal in welded joints of high-alloy and duplex stainless steels (DSS). The feasibility of using particular method in different
cases is analysed. The article presents the results of the analysis of the influence of cooling rate on the structure and phase composition
of weld metal and HAZ during welding of high-alloy chromium-nickel steels and duplex stainless steels. It is shown
that due to the influence of high cooling rates, such as during welding in aqueous medium, the amount of ferritic component in
the weld metal and deposited metal of high-alloy steels decreases, whereas in the weld metal and HAZ of duplex steels, on the
contrary, the amount of austenitic component decreases. This depends on the type of metal solidification. The presented data
explain the differences in determining the phase composition of the weld metal and deposited metal at the same alloying during
welding in different environments. The main advantages and disadvantages of various techniques and methods for quantitative
determination of the phase composition of welded joints of high-alloy and duplex steels are shown.
Keywords: high-alloy chromium-nickel steels, duplex steels, phase composition, austenite, ferrite, cooling rate, methods
for quantitative determination of phase composition
Received: 25.09.2025
Received in revised form: 29.10.2025
Accepted: 22.04.2025
References
1. Kakhovsky, N.I. (1975) Welding of high-alloy steels. Kyiv,
Tekhnika [in Russian].
2. Kopersak, N.I. (1963) Influence of alloying elements on 475°
brittleness of austenitic-ferritic deposited metal. Avtomaticheskaya
Svarka, 7, 15–20 [in Russian].
3. Belinsky, A.L. et al. (1970) About corrosion resistance of pure
austenitic steel grade OKh17N16M3T. In Coll.: Protection of
Metals, Vol. 6, Issue 1. Moscow, Nauka [in Russian].
4. https://uas.su/books/newmaterial/722/razdel722.php
5. Labanowski, J. (1997) Duplex steels — new material for
chemical processing industry. Eng. and Chemical Equipment,
2, 3–10.
6. API 582–09: Welding quidelines for the chemical, oil, and gas
industries.
7. Norsok M-630, Edition 6. Oktober 2013. Material data sheets
and element data sheets for piping.
8. Muthupandi, V., Srinivasan, P.B., Seshadri, S.K., Sundaresan,
S. (2003) Effect of weld metal chemistry and heat input
on the structure and properties of duplex stainless steel welds.
Mater. Sci. and Eng.: A, 358(1–2), 9–16. DOI: https://doi.org/10.1016/S0921-5093(03)00077-7
9. Liou, H.-Y., Hsieh, R.-I., Tsai, W.-T. (2002) Microstructure
and pitting corrosion in simulated heat-affected zones of duplex
stainless steels. Materials Chemistry and Physics, 74,
33–42. DOI: https://doi.org/10.1016/S0254-0584(01)00409-6
10. Higelin, A., Manchet, S.L., Passot, G. et al. (2022) Heat-affected
zone ferrite content control of a duplex stainless steel
grade to enhance weldability. Welding in the World, 66, 1503–1519. DOI: https://doi.org/10.1007/s40194-022-01326-0
11. Verma, I., Taiwade, R.V (2017) Effect of welding processes
and conditions on the microstructure, mechanical properties
and corrosion resistance of duplex stainless steel weldments —
A review. J. of Manufacturing Processes, 25, 134–152. DOI:
https://doi.org/10.1016/J.JMAPRO.2016.11.003
12. Schäffler, A.L. (1949) Constitution diagram for stainless steel
weld metal. Metal Progress, 56, 680–680.
13. Delong, F.A. (1973) Ferrite determination in stainless steel
weld metal. Welding J., 52(5), 210-s–214-s.
14. Kotecki, D.I., Siewert, P.A. (1992) WRC-1992 constitution
diagram for stainless steel weld metals: A modification of the
WRC-1988 diagram. Welding J., 71(5), 171–178.
15. Lippold, J.C., Kotecki, D.J. (2005) Welding Metallurgy and
Weldability of Stainless Steel. Wiley, Hoboken, New Jersey.
16. Kolpingon, E.Yu., Ivanova, M.V., Shitov, E.V. (2007) Nitrogen-containing steels of equivalent composition. Chyornye
Metally, February, 10–12 [in Russian].
17. Pomarin, Yu.M., Bialik, O.M., Hryhorenko, H.M. (2007) The
influence of gases on the structure and properties of metals
and alloys. Kyiv, NTUU KPI [in Ukrainian].
18. Cobelli, P. (2003) Development of ultrahigh strength austenitic
stainless steels alloyed with nitrogen: Syn. of Thesis for
Dr. of Techn. Sci. Degree. Swiss Federal Institute of Technology
in Zurich.
19. Vicente, A., Silva, P.A.D., Souza, R.L.D. et al. (2020) The use
of duplex stainless steel filler metals to avoid hot cracking in
GTAW welding of austenitic stainless steel AISI 316L. DOI:
https://doi.org/10.11606/T.3.2017.tde-05092017-103140
20. Jonson, E., Grabaek, L. et al. (1988) Microstructure of rapidly
solidified stainless steel. Mater. Sci. and Eng., 98, 301–303.
DOI: https://doi.org/10.1016/0025-5416(88)90174-7
21. http://www Sales@otec.com.ua
22. (2020) ASTM E 562: Standard test method for determining
volume fraction by systematic manual point count. West Conshohocken,
ASTM.
23. Sheiko, I.V., Grigorenko, G.M., Shapovalov, V.A. (2016) Alloying
of steels and alloys with nitrogen from the arc plasma.
Theory and practice (Review. Pt.1). Sovremennaya Elektrometallurgiya,
122(1), 32–37 [in Russian]. DOI: https://doi.org/10.15407/sem2016.01.05
24. Verma, J., Taiwade, R.V., Khatirkar, R.K. et al. (2016) Microstructure,
mechanical and intergranular corrosion behavior
of dissimilar DSS 2205 and ASS 316 L shielded metal arc
welds. Transact. Indian Inst. Met., 70, 225–237. DOI: https://doi.org/10.1007/s 2666-016-0878-8
25. Zemzin, V.N. (1966) Welded joints of dissimilar steels. Moscow,
Mashinostroenie [in Russian].
26. (2023) ASTM E 1245-03: Standard practice for determining
the inclusion or second-phase constituent content of metals by
automatic image analysis. https://cdn.standards.iteh.ai.
27. Vicente, A., Silva, P.A.D, Sadanandan, S. et al. (2020) Study
on the effect of nitrogen content and cooling rate on the ferrite
number of austenitic stainless steels. Int. J. of Advanced
Eng. Research and Sci., 7(11), 270–277. DOI: https://doi.org/10.22161/ijaers.711.34
28. Maksymov, S.Yu., Fadeyeva, G.V., Jia Chuanbao, et al.
(2024) Influence of cooling rate on the microstructure and
phase composition of the HAZ of duplex stainless steel (DSS)
2205 during wet underwater welding. The Paton Welding J.,
1, 3–12. DOI: https://doi.org/10.37434/tpwj2024.01.01
Suggested Citation
G.V. Fadeeva, S.Yu. Maksymov, Chuanbao Jia, D.V. Vasiliev, A.A. Radzievska (2025) Determination of the quantitative phase composition of the metal of welded joints of high-alloy steels, including duplex steels.
The Paton Welding J., 03, 3-12.