The Paton Welding Journal, 2025, #3, 30-34 pages
Study of the temperatures of phase transformation in heat-resistant titanium alloy of Ti‒Al‒Zr‒Si‒Mo‒Nb‒Sn alloying system
A.Yu. Severyn1, V.Yu. Bilous1, L.M. Radchenko1, V.A. Kostin1, I.I. Alekseenko1, L.T. Yeremeyeva1, M.M. Kuzmenko2
1E.O. Paton Electric Welding Institute of the NASU.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: tim.severin72@gmail.com
2Frantsevych Institute for Materials Science Problems of the NASU
3 Omelian Pritsak Str., 03142, Kyiv, Ukraine
Abstract
Calculated continuous-cooling-transformation diagram (CCT-diagram) was derived for titanium alloy of Ti‒Al‒Zr‒Si‒Mo‒
Nb‒Sn system to determine the phase transformation kinetics. The structures and microhardness of samples of heat-resistant
titanium alloy of Ti‒Al‒Zr‒Si‒Mo‒Nb‒Sn alloying system, quenched from different temperatures, were studied. It was proved
that application of computational methods of modeling the structure-phase transformations for heat-resistant titanium alloys
allows obtaining results close to the experimental values.
Keywords: heat-resistant titanium alloy, thermodynamic modeling, phase transformation, deformation processing, temperature,
structure, phase, microhardness
Received: 20.01.2025
Received in revised form: 21.02.2025
Accepted: 09.04.2025
References
1. Hsueh-Chuan Hsu, Shih-Ching Wu, Shih-Kuang Hsu et
al. (2014) Structure and mechanical properties of as-cast
Ti–Si alloys. Intermetallics, 47(4), 11–16. DOI: https://doi.org/10.1016/j.intermet. 2013.12.004
2. Shevchenko, O.M., Kulak, L.D., Kuzmenko, M.M. et al.
(2023) The influence of the deformation and heat treatment on
the structure and heat-resistance of Ti–Al–Zr–Si alloys. Mater.
Sci., 59(1), 40–48. DOI: https://doi.org/10.1007/s11003-023-00741-y
3. Solonina, O.R., Glazunov, S.P. (1976) Heat-resistant titanium
alloys. Moscow, Metallurgiya [in Russian].
4. Akhonin, S.V., Berezos, V.O., Pikulin, O.M. et al. (2022)
Producing high-temperature titanium alloys of Ti–Al–Zr–Si–Mo–Nb–Sn system by electron beam melting. Suchasna
Elektrometalurhiya, 2, 3–9 [in Ukrainian]. DOI: https://doi.org/10.37434/sem2022.02.01
5. Fan, Z., Tsakiropoulos, P., Miodownik, A.P. (1994) A generalized
law of mixtures. J. of Mater. Sci., 29, 141–150. DOI:
https:// doi.org/10.1007/BF00356585
6. Lukas, H.L., Fries, S.G., Sundman, B. (2007) Computational
thermodynamics: The CALPHAD method. U.K., Cambridge
University Press.
7. Khina, B., Goranskiy, G.G. (2017) Thermodynamics of multicomponent
amorphous alloys: Theories and experiment comparison.
Adv. Materials and Technologies, 1, 036–043. DOI:
https://doi.org/10.17277/amt.2017.01
8. Dinsdale, A.T. (1991) SGTE data for pure elements. Calphad,
15(4), 317–425. DOI: https://doi.org/10.1016/0364-5916(91)90030-N
9. Akhonin, S.V., Belous, V.Yu., Selin, R.V., Kostin, V.A. (2021)
Influence of TIG welding thermal cycle on temperature distribution
and phase transformation in low-cost titanium alloy. In:
Proc. of IOP Conf. Series: Earth and Environmental Sci., 688,
1–9. DOI: http://dx.doi.org/10.1088/1755-1315/688/1/012012
10. Lyakisheva, N.P. (2000) State diagram of binary metallic systems:
Refer. Book. Vol. 2, Book 2. Moscow, Mashinostroenie
[in Russian].
11. Akhonin, S.V., Severyn, A.Yu., Berezos, V.O. et al. (2024)
Influence of deformation processing modes on the structure
and mechanical properties of a high-temperature titanium alloy
of the Ti–Al–Zr–Si–Mo–Nb–Sn system. Metallophysics
and Advanced Technologies, 46(7), 705–715. DOI: https://doi.org/10.15407/mfint.46.07.0705
Suggested Citation
A.Yu. Severyn, V.Yu. Bilous, L.M. Radchenko, V.A. Kostin, I.I. Alekseenko, L.T. Yeremeyeva, M.M. Kuzmenko (2025) Study of the temperatures of phase transformation in heat-resistant titanium alloy of Ti‒Al‒Zr‒Si‒Mo‒Nb‒Sn alloying system.
The Paton Welding J., 03, 30-34.