The Paton Welding Journal, 2025, #4, 7-11 pages
Magnetic pulse treatment of welded joints in fusion welding
L.M. Lobanov1, M.O. Pashchyn1, O.L. Mikhodui1, A.N. Timoshenko1, K.V. Shyian1, O.M. Karlov2, I.P. Kondratenko2, R.S. Kryshchuk2, V.V. Chopyk2
1E.O. Paton Electric Welding Institute of the NASU.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: olha.mikhodui@gmail.com
2Institute of Electrodynamics of the NASU
56 Beresteiskyi Prosp, 03057, Kyiv, Ukraine. E-mail: ied1@ied.org.ua
Abstract
Treatment with a pulsed electromagnetic field (TPEMF) of welded joints leads to a decrease in the level of residual welding
stresses. TPEMF in the welding process contributes to an increase in the efficiency of the welding process (compared to
TPEMF after welding) and the simplicity of its technical implementation. On the basis of mathematical modeling and experimental
studies of magnetic pulse processes, an automated complex for TIG welding has been developed that is compatible with
the TPEMF of the weld metal under the conditions of a thermal deformation welding cycle.
Keywords: pulsed electromagnetic field, welded joints, residual welding stresses, TIG welding, structure dispersion, mathematical
modeling, aluminium alloy
Received: 08.01.2025
Received in revised form: 28.02.2025
Accepted: 08.05.2025
References
1. Lobanov, L.M., Pashchin, N.A., Cherkashin, A.V. et al. (2012)
Efficiency of electrodynamic treatment of aluminium alloy
AMg6 and its welded joints. The Paton Welding J., 1, 2–6.
2. Lobanov, L.M., Pashchin, N.A., Mihodui, O.L. (2014) Repair
of the AMg6 aluminum alloy welded structure by the electric
processing method. Weld. Res. Appl., 1, 55–62.
3. Lobanov, L.M., Pashchin, N.A., Yashchuk, V.A., Mikhodui,
O.L. (2015) Effect of electrodynamic treatment on the fracture
resistance of the AMg6 aluminum alloy under cyclic
loading. Strength of Materials, 47, 447–453. DOI: https://doi.org/10.1007/s11223-015-9676-5
4. Lobanov, L.M., Pashchin, N.A., Timoshenko, A.N. et al.
(2017) Effect of the electrodynamic treatment on the life of
AMg6 aluminum alloy weld joints. Strength of Materials, 49,
234–238. DOI: http://dx.doi.org/10.1007/s11223-017-9862-8
5. Korzhik, V.N., Pashchin, N.A., Mikhodui, O.L. et al. (2017)
Comparative evaluation of methods of arc and hybrid plasma-arc welding of aluminum alloy 1561 using consumable
electrode. The Paton Welding J., 4, 30–34. DOI: https://doi.org/10.15407/tpwj2017.04.06
6. Batygin, Y.V., Lavinsky, V.I., Khimenko, L.T. (2003) Pulsed
magnetic fields for advanced technologies. Ed. by Yu.V. Batygin.
Kharkov, MOST-Tornado [in Russian].
7. Andrea, D., Burleta, T., Körkemeyerb, F. et al. (2019) Investigation
of the electroplastic effect using nanoindentation. Materials
& Design, 183, 108153. DOI: https://doi.org/10.1016/j.matdes.2019.108153
8. Nayanathara Hendeniya, Gayan Aravinda Abeygunawardena,
Indika De. Silva, Shiranga Wickramasinghe (2020) The
tensile electroplasticity of low carbon steel with low amplitude
pulse current. In: 2020 Moratuwa Engineering Research
Conf. (MERCon), 165–169. DOI: https://doi.org/10.1109/MERCon50084.2020.9185238
9. Turenko, A.N., Batygin, Y.V., Gnatov, A.V. (2009) Pulsed
magnetic fields for advanced technologies. Monography.
In: Vol.3. Theory and experiment of attraction of thin-walled
metals by pulsed magnetic fields. Kharkiv, KhNADU [in Russian].
10. Batygin, Y.V., Lavinskyi, V.I., Khavin, V.L. (2009) Method of
magnetic pulsed processing of thin-walled metal billets. Pat.
UA 74909, 15.02.2006 [in Ukrainian].
11. Lobanov, L.M., Pashchyn, M.O., Mikhodui, O.L. et al. (2022)
Stress-strain state of welded joints of AMg6 alloy after electrodynamic
treatment during welding. Strength of Materials,
54(6), 983–996. DOI: https://doi.org/10.1007/s11223-023-00474-y
12. Lobanov, L.M., Pashchyn, M.O., Mikhodui, O.L. (2021)
Pulsed electromagnetic field effect on residual stresses and
strains of welded joints of AMg6 aluminum alloy. Strength
of Materials, 53(6), 834–841. DOI: https://doi.org/10.1007/s11223-022-00350-1
13. Vasetsky, Y.M., Dzyuba K.K. (2017) Analytical method of
calculation of quasi-stationary three-dimensional electromagnetic
current field flowing along a contour of arbitrary
configuration near an electrically conductive body. Tekhnichna
Elektrodynamika, 5, 7–17 [in Russian]. DOI: https://doi.org/10.15407/techned2017.05.007
14. Lobanov, L.M., Pivtorak, V.A., Savitsky, V.V., Tkachuk, G.I.
(2006) Procedure for determination of residual stresses in
welded joints and structural elements using electron speckle-
interferometry. The Paton Welding J., 1, 24–29.
15. Lobanov, L.M., Pashchin, N.A., Mikhodui, O.L. (2012) Influence
of the loading conditions on the deformation resistance
of AMg6 alloy during electrodynamic treatment. Strength
of Materials, 44(5), 472–479. DOI: https://doi.org/10.1007/s11223-012-9401-6
16. Lobanov, L.M., Pashchin, N.A., Cherkashin, A.V. et al. (2012)
Repair welding of intermediate cases of aircraft engines from
high-temperature magnesium alloy ML10 with application of
electrodynamic treatment. The Paton Welding J., 11, 28–33.
17. Belyi, I.V., Fertik, S.M., Khimenko, L.T. (1977) Handbook on
magnetic pulse treatment of metals. Kharkiv, Vyshcha Shkola
[in Russian].
18. Batygin, Yu.V., Chaplygin, E.A. (2006) Eddy currents in flat
sheet metal blanks. Elektrotekhnika i Elektromekhanika, 5,
54–59 [in Russian].
19. Strizhalo, V.A., Novogrudsky, L.S., Vorobiev, E.V. (2008)
Strength of materials at cryogenic temperatures with regard
to the influence of electromagnetic fields. Kyiv, IPP [in Russian].
20. Rashchepkin, A.P., Kondratenko, I.P., Karlov, O.M., Kryshchuk,
R.S. (2019) Electromagnetic field of an inductor with
a W-shaped core for magnetic pulse treatment of materials.
Tekhnichna Elektrodynamika, 6, 5–12 [in Ukrainian]. DOI:
https://doi.org/10.15407/techned2019.06.005
Suggested Citation
L.M. Lobanov, M.O. Pashchyn, O.L. Mikhodui, A.N. Timoshenko, K.V. Shyian, O.M. Karlov, I.P. Kondratenko, R.S. Kryshchuk, V.V. Chopyk (2025) Magnetic pulse treatment of welded joints in fusion welding.
The Paton Welding J., 04, 7-11.