The Paton Welding Journal, 2025, #6, 31-35 pages
Features of smelting of heat-resistant titanium alloy of the Ti-Nb-Al-Mo-Zr alloying system by electron beam melting with a cold hearth
S.V. Akhonin1, V.O. Berezos1, A.Yu. Severyn1, O.H. Yerokhin1, V.V. Pashynskyi2
1E.O. Paton Electric Welding Institute of the NASU.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: titan.paton@gmail.com
2Technical University “Metinvest Polytechnic” LLC. 80 Southern Highway, 69008, Zaporizhzhia, Ukraine
Abstract
In order to develop the technique and technology of smelting ingots of heat-resistant alloys based on titanium with the content
of the Ti2AlNb ortho-phase, experimental works were carried out to produce the experimental Ti‒39Nb‒16Al‒2.6Mo‒1.4Zr
alloy. The results of studies of the ingot produced by double electron beam remelting are presented. The developed technology
and experimental melting of the 110 mm diameter Ti‒39Nb‒16Al‒2.6Mo‒1.4Zr ingot by the electron beam melting method
with a cold hearth showed the prospects of using the EBM method for producing ingots of heat-resistant alloys based on titanium
with the content of the Ti2AlNb ortho-phase.
Keywords: electron beam melting, cold hearth, ingot, refractory elements, chemical composition, titanium aluminide,
ortho-phase
Received: 07.04.2025
Received in revised form: 13.05.2025
Accepted: 25.06.2025
References
1. Kumpfert, J. (2001) Intermetallic alloys based on orthorhombic
titanium aluminide. Adv. Eng. Mater., 3, 851–864. DOI:
https://doi.org/10.1002/1527-2648(200111)3:113.0.CO;2-G
2. Partridge, A., Shelton, E.F.J. (2001) Processing and mechanical
property studies of orthorhombic titanium-aluminide-based alloys. Air Space Eur., 3, 170–173. DOI: https://doi.org/10.1016/S1290-0958(01)90085-1
3. Gogia, A.K. (2005) High-temperature titanium alloys. Defence
Sci. J., 55, 49–173. DOI: https://doi.org/10.14429/dsj.55.1979
4. Chen, Y., Niu, H., Kong, F., Xiao, S. (2011) Microstructure
and fracture toughness of a β phase containing TiAl alloy. Intermetallics,
19, 1405–1410. DOI: https://doi.org/10.1016/j.intermet.2011.05.006.
5. Emura, S., Araoka, A., Hagiwara, M. (2003) B2 grain size refinement
and its effect on room temperature tensile properties
of a Ti–22Al-27Nb orthorhombic intermetallic alloy. Scripta
Mater., 48, 629–634. DOI: https://doi.org/10.1016/s1359-6462(02)00462-1
6. Akhonin, S.V., Severin, A.Yu., Berezos, V.A. (2015) Development
of technology of adding the refractory alloying elements
into alloys on the base of Ti2AlNb intermetallic in electron
beam melting. Sovremennaya Elektrometallurgiya, 3, 12–15
[in Russian].
7. Vutova, K., Vassileva, V., Stefanova, V. et al. (2019) Effect of
electron beam method on processing of titanium technogenic
material. Metals, 9(6), 683. DOI: https://doi.org/10.3390/
met9060683
8. Liu, Q.L., Li, X.M., Jiang, Y.H. (2016) Research progress of
electron beam cold hearth melting for titanium and titanium
alloys. Hot Work. Technol., 45, 9–14.
9. Akhonin, S.V., Severin, A.Yu., Berezos, V.A., Erokhin A.G.
(2013) Mathematical modelling of evaporation processes in
melting of ingots of multicomponent titanium alloys in electron
beam equipment with a cold hearth. Advances in Electrometallurgy,
4, 288–295.
10. Akhonin, S.V., Pikulin, A.N., Berezos, V.A. et al. (2019)
Laboratory electron beam unit UE-208M. Suchasna Elektrometalurhiya,
3, 15–22. DOI: https://doi.org/10.15407/sem2019.03.03
11. Wang, Y., Gao, L., Xin, Y. et al. (2024) Numerical modeling
of electron beam cold hearth melting for the cold hearth. Minerals,
14(6), 601. DOI: https://doi.org/10.3390/min14060601
12. Bellot, J.-P., Hess, E., Hitzer, D. (2000) Aluminum volatilization
and inclusion removal in the electron beam melting and
refining of titanium alloys. Metallurgical, Materials Transact.,
31B(8), 845–859.
Suggested Citation
S.V. Akhonin, V.O. Berezos, A.Yu. Severyn, O.H. Yerokhin, V.V. Pashynskyi (2025) Features of smelting of heat-resistant titanium alloy of the Ti-Nb-Al-Mo-Zr alloying system by electron beam melting with a cold hearth.
The Paton Welding J., 06, 31-35.