 
	
  
        
	
The Paton Welding Journal, 2025, #10, 3-11 pages
Prospects of ultrasound application in the production of dispersed granules by gas and plasma-arc atomization of metal melts and compact materials (Review)
V.M. Korzhyk, O.S. Tereshchenko, D.V. Strohonov, O.I. Demianov, O.V. Ganushchak
E.O. Paton Electric Welding Institute of the NASU.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: vnkorzhykn@gmail.com
Abstract
The technological features of ultrasonic vibrations utilizing for the atomization of microvolumes of metal melts in production
technologies of dispersed spherical powders are considered, such as: gas atomization, ultrasonic atomization on sonotrode,
plasma arc atomization by means of ultrasonic standing wave, electric arc atomization with the application of ultrasound to
the wire, and plasma arc atomization with the application of ultrasonic vibrations to the atomized material. The influence of
ultrasonic vibrations on the process of melt droplet formation and detachment for the aforementioned methods is analyzed. It is
established that the superposition of ultrasound promotes a refinement of the initial melt droplets, intensifies dispersion due to
putting additional pressure on the melt droplets, and, as a result, contributes to the narrowing of the particle size distribution. It
has been found that among the analyzed approaches for obtaining spherical powders using high-frequency acoustic vibrations,
the most promising is the technology of plasma arc atomization of wires and rods under the condition of applying ultrasound
directly to the billets. An analysis of the efficiency and prospects of using plasma-arc atomization technologies with the introduction
of ultrasonic vibrations into the atomized billets has been conducted, and it is hypothesized that this approach will
allow increasing the yield of ‒63 μm fraction powders up to 80‒90 %, which is promising for application in the production of
powders for additive manufacturing technologies.
alloys with variable thicknesses ranging from 45 to 65 mm while maintaining the same number of passes.
Keywords: ultrasonic atomization, dispersion, plasma arc atomization, gas atomization, spherical powders, particle size
distribution
Received: 23.04.2025
Received in revised form: 22.07.2025
Accepted: 25.10.2025
References
1. Shoh, A. (1975) Industrial applications of ultrasound — A review
I. High-power ultrasound. IEEE Transact. on Sonics and
Ultrasonics, 22(2), 60–70. DOI: https://doi.org/10.1109/tsu.1975.30780
2. Škamat, J., Valiulis, A.V. (2010) About the possibility of using
ultrasound in thermal spray technologies. Mokslas-Lietuvos
Ateitis, 2(4), 39–41. DOI: https://doi.org/10.3846/mla.2010.066
3. Kumar, S., Wu, C.S., Padhy, G.K., Ding, W. (2017) Application
of ultrasonic vibrations in welding and metal processing:
A status review. J. of Manufacturing Proc., 26, 295–322.
DOI: https://doi.org/10.1016/j.jmapro.2017.02.027
4. Li, Y., Wu, C., Chen, M. (2020) Effects of ultrasonic vibration
on the transport coefficients in plasma arc welding. Metals,
10(3), 312. DOI: https://doi.org/110.3390/met10030312
5. Wu, C.S., Zhao, C.Y., Zhang, C., Li, Y.F. (2017) Ultrasonic
vibration assisted keyholing plasma arc welding. Welding J.,
96, 279–287
6. Qiao, J., Wu, C-S., Li, Y. (2020) Numerical and experimental
investigation of keyholing process in ultrasonic vibration
assisted plasma arc welding. J. of Manufacturing Proc., 50,
603–613. DOI: https://doi.org/10.1016/j.jmapro.2020.01.019
7. Fan, C.L., Yang, C.L., Lin, S.B., Fan, Y.Y. (2013) Arc characteristics
of ultrasonic wave-assisted GMAW . Welding J.,
92(12), 375–380.
8. Fan, C., Zhou, L., Liu, Z. et al. (2018) Arc character and
droplet transfer of pulsed ultrasonic wave-assisted GMAW .
Inter. J. Ad. Manuf. Technol., 95, 2219–2226. DOI: https://doi.org/10.1007/s00170-017-1414-7
9. Weifeng, X., Fan, C.L., Yang, C.L. (2016) Pulsed ultrasonic
wave assisted GMAW of 7 A 52 aluminium alloy. Welding J.,
95, 239–247.
10. Luo, J., He, Z., Liu, Z. et al. (2024) The influence of coaxial
ultrasound on the droplet transfer of high nitrogen steel
GMAW process. Materials, (17), 5509, 14. DOI: https://doi.org/10.3390/ma17225509
11. Fan, Y.Y., Yang, C.L., Sanbao, L. et al. (2012) Ultrasonic
wave assisted GMAW : A novel method adds ultrasonic wave
to provide an additional force to detach the droplet. Welding
J., 91, 91–99.
12. Zheng, H, Qi, B., Yang, M. (2021) Dynamic analysis of the
ultrasonic-frequency pulsed GMAW metal transfer process.
J. of Manufacturing Proc., 62, 283–290. DOI: https://doi.org/10.1016/j.jmapro.2020.12.049
13. Kaiyuan, W., Jing, L., Haoran, Y. et al. (2024) Influence of
high-frequency pulse on droplet transfer process and weld
formation in double-wire median pulsed GMAW of aluminium
alloy. Research square. DOI: https://doi.org/10.21203/
rs.3.rs-4308754/v1. https://www.researchsquare.com/article/rs-4308754/v1
14. Ghosh Prakriti, K., Lutz Dorn M.C. Hübner, Vinay K. Goyal
(2007) Arc characteristics and behaviour of metal transfer in
pulsed current GMA welding of aluminium alloy. J. of Materials
Proc. Technology, 194, 163–175.
15. Shanthar, R., Chen, K., Abeykoon, C. (2023) Powder-based
additive manufacturing: a critical review of materials, methods,
opportunities, and challenges. Adv. Eng. Mater., (25),
2300375, 43. DOI: https://doi.org/10.1002/adem.202300375
16. Fatemeh, A.T., Zobaideh, H., Kahrizsangi, S. et al. (2024)
Spreadability of powders for additive manufacturing: a critical
review of metrics and characterisation methods. Particuology,
93, 211–234. DOI: https://doi.org/10.1016/j.partic.2024.06.013
17. Barreras, F., Amaveda, H., Lozano, A. (2002) Transient
high-frequency ultrasonic water atomization. Experiments in
Fluids, 33, 405–413. DOI: https://doi.org/10.1007/s00348-002-0456-1
18. Lozano, A., García, J., Alconchel, J. et. al. (2017) Influence
of liquid properties on ultrasonic atomization. In:
Proc. of 28th European Conf. on Liquid Atomization and
Spray Systems (ILASS2017). DOI: https://doi.org/10.4995/ILASS2017.2017.4588
19. Rajan, R., Pandit, A.B. (2001) Correlations to predict droplet
size in ultrasonic atomization. Ultrasonics, 39(4), 235–255.
DOI: https://doi.org/10.1016/s0041-624x(01)00054-3
20. Camacho-Lie, M., Antonio-Gutiérrez, O., López-Díaz, A.S. et
al. (2023) Factors influencing droplet size in pneumatic and
ultrasonic atomization and its application in food processing.
Discover Food, 3(23). DOI: https://doi.org/10.1007/s44187-023-00065-5
21. Dobre, M., Bolle, L. (2002) Practical design of ultrasonic
spray devices: Experimental testing of several atomizer geometries.
Experimental Thermal and Fluid Sci., 26, 205–211.
DOI: https://doi.org/10.1016/S0894-1777(02)00128-0
22. Patil, M.N., Pandit, A.B., Thorat, B.N. (2007) Ultrasonic
atomization assisted spray drying. In: Proc. of the 5th
Asia-Pacific Drying Conf., 255–261. DOI: https://doi.org/10.1142/9789812771957_0036
23. Khaire, R., Gogate, P. (2020) Novel approaches based on ultrasound
for spray drying of food and bioactive compounds.
Drying Technology, 39(12), 1832–1853. DOI: https://doi.org/10.1080/07373937.2020.180492639
24. Marie, A., Tourbin, M., Robisson, A.C. et al. (2021) Wet
size measurements for the evaluation of the deagglomeration
behaviour of spray-dried alumina powders in suspension.
Ceramics Inter., 48(6), 7926–7936. DOI: https://doi.org/10.1016/j.ceramint.2021.11.340
25. Nandiyanto, A., Okuyama, K. (2011) Progress in developing
spray-drying methods for the production of controlled morphology
particles: From the nanometer to submicrometer size
ranges. Advanced Powder Technology, 22 (1), 1–19. DOI:
https://doi.org/10.1016/j.apt.2010.09.011
26. Zhou, K., Han, C. (2023) Metal powder-based additive manufacturing.
319. DOI: https://doi.org/10.1002/9783527822249
27. Chen, G., Zhao, S., Tan, P. et al. (2018) A comparative study
of Ti–6Al–4V powders for additive manufacturing by gas atomization,
plasma rotating electrode process and plasma atomization.
Powder Technology, 333, 38–46. DOI: https://doi.org/10.1016/j.powtec.2018.04.013
28. Rai, G., Lavernia, E., Grant, N. J. (1985) Powder size and
distribution in ultrasonic gas atomization. JOM, 37(8), 22–26.
DOI: https://doi.org/10.1007/bf03257674
29. Baram, J. (1988) Pressure characteristics at the pour-tube orifice
in ultrasonic gas atomization. Materials Sci. and Eng., 98,
65–69. DOI: https://doi.org/10.1016/0025-5416(88)90128-0
30. Anand, V., Kaufman, A.J., Grant, N. (1978) Rapid solidification
of a modified 7075 aluminium alloy by ultrasonic gas
atomization. Rapid Solidification Processing, Principles and
Technologies, II, Claitor, Baton Rouge, LA, 273–286.
31. Orlov, Y., Mamedov, B. (1983) Ultrasonic atomization of liquid
metals. Powder Metallurgy and Metal Ceramics, 22(4),
254–255. DOI: https://doi.org/10.1007/bf00795594
32. Żrodowski, Ł., Wróblewski, R., Choma, T. et al. (2021) Novel
cold crucible ultrasonic atomization powder production method
for 3D printing. Materials,14(10), 2541, 11. DOI: https://doi.org/10.3390/ma14102541
33. Halapi, D., Varga, L. (2023) Ultrasonic powder atomization
for additive manufacturing. Inter. J. of Eng. and Management
Sci., 8(2), 69–75. DOI: https://doi.org/10.21791/IJEMS.2023.2.8
34. Bałasz, B., Bielecki, M., Gulbiński, W., Słoboda, Ł. (2023)
Comparison of ultrasonic and other atomization methods in
metal powder production. J. of Achievements in Materials
and Manufacturing Eng., 116(1), 11–24. DOI: https://doi.org/10.5604/01.3001.0016.3393
35. Priyadarshi, A., Shahrani, S., Choma T. et. al. (2024). New
insights into the mechanism of ultrasonic atomization for the
production of metal powders in additive manufacturing. Add.
Manuf., 83(1), 104033, 20. DOI: https://doi.org/10.1016/j.addma.2024.104033
36. Bauckhage, K., Andersen, O., Hansmann, S. et al. (1996) Production
of fine powders by ultrasonic standing wave atomization.
Powder Technology, 86(1), 77–86. DOI: https://doi.org/10.1016/0032-5910(95)03040-9
37. Andersen, O., Hansmann, S., Bauckhage, K. (1996) Production
of fine particles from melts of metals or highly viscous
fluids by ultrasonic standing wave atomization. Particle &
Particle Systems Characterization, 13(3), 217–223. DOI:
https://doi.org/10.1002/ppsc.19960130308
38. Irisarri, J., Ezcurdia, I., Iriarte, N. et al. (2025) Electric
plasma guided with ultrasonic fields. Sci. Advances, 11(6):
eadp0686. 6. DOI: https://doi.org/10.1126/sciadv.adp0686
39. Korzhyk, V.M., Strogonov, D.V., Burlachenko, O.M. et al.
(2024) Development of hybrid technology of producing
spherical powders from wire materials using high-speed
plasma jets and electric arc. Suchasna Elektrometalurhiya, 3,
36–44. DOI: https://doi.org/10.37434/sem2024.03.05
40. Chen, D., Daoud, H., Scherm, F. et al. (2020) Stainless steel
powder produced by a novel arc spray process. J. of Materials
Research and Technology, 9, 8314–8322. DOI: https://doi.org/10.1016/j.jmrt.2020.05.076
41. Dietrich, S., Zaeh, M.F. (2019) Arc-based powder production
of AlSi7Mg0.6. Procedia Manufacturing, 40, 27–31. DOI:
https://doi.org/10.1016/j.promfg.2020.02.006
42. Strogonov, D.V., Korzhyk, V.M., Jianglong, Yi et al. (2022)
Influence of the parameters of the process of plasma-arc
spheroidization of current-conducting wire from low-carbon
steel on the granulometric composition of the produced powders.
Suchasna Elektrometalurhiya, 3, 29–37. DOI: https://doi.org/10.37434/sem2022.03.05
43. Dion, C., Carabin, P., Kreklewetz, W. (2021) Plasma apparatus
for the production of high quality spherical powders at
high capacity. European Pat. EP3302855B1.
44. https://pyrogenesisadditive.com/#plasmaAtomization
45. Korzhyk, V.M., Strohonov, D.V., Burlachenko, O.M. et al.
(2023) Development of plasma-arc technologies of spherical
granule production for additive manufacturing and granule
metallurgy. The Paton Welding J., 12, 3–18. DOI: https://doi.org/10.37434/tpwj2023.12.01
Suggested Citation
V.M. Korzhyk, O.S. Tereshchenko, D.V. Strohonov, O.I. Demianov, O.V. Ganushchak (2025) Prospects of ultrasound application in the production of dispersed granules by gas and plasma-arc atomization of metal melts and compact materials (Review). 
The Paton Welding J., 10, 3-11.