Print
2025 №10 (04) DOI of Article
10.37434/tpwj2025.10.05
2025 №10 (06)


The Paton Welding Journal, 2025, #10, 31-35 pages

Thermodynamic analysis of preparation of two key refractory boron compounds

K. Ukleba1, Z. Mirijanashvili1, O. Tsagareishvili1, L. Chkhartishvili1,2

1F. Tavadze Metallurgy and Materials Science Institute 8b Elizbar Mindeli Str., 0186, Tbilisi, Georgia
2Georgian Technical University 77 Merab Kostava Ave., 0160, Tbilisi, Georgia. E-mail: levanchkhartishvili@gtu.ge

Abstract
Thermodynamic calculations are performed to determine the optimal conditions for carrying out two chemical reactions to obtain boron carbide and titanium diboride, important refractory boron compounds, in combination with aluminum oxide. The accompanying phase transformations at a fixed pressure are established as a function of temperature. alloys with variable thicknesses ranging from 45 to 65 mm while maintaining the same number of passes.
Keywords: thermodynamic analysis, temperature, enthalpy, Gibbs free energy, chemical reaction, boron carbide, titanium diboride, aluminum oxide

Received: 18.08.2025
Received in revised form: 23.09.2025
Accepted: 24.10.2025

References

1. Chkhartishvili, L., Mikeladze, A., Tsagareishvili, O. et al. (2018) Boron-containing nanocrystalline ceramic and metal–ceramic materials. In: Handbook of Nanomaterials for Industrial Applications. Ed. by Ch.M. Hussain. Amsterdam, Elsevier, 13–35.
2. Chkhartishvili, L., Tsagareishvili, O., Mikeladze, A. et al. (2021) Highly stable boron carbide based nanocomposites. In: Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Eds by O.V. Kharissova, L.M.T. Martinez, B.I. Kharisov. Cham, Springer Nature, 327–351.
3. Chkhartishvili, L., Antashvili, L., Dalakishvili, L. et al. (2021) On modeling of synthesis process of boron carbide based nanocomposites. Condensed Matter, 6(1), 3(1–13).
4. Chkhartishvili, L., Mikeladze, A., Tsagareishvili, O. et al. (2023) Advanced boron carbide matrix nanocomposites obtained from liquid-charge: Focused review. Condensed Matter, 8(2), 37 (1–54).
5. Mikeladze, A., Tsagareishvili, O., Chkhartishvili, L. et al. (2019) Production of titanium-containing metal-ceramic composites based on boron carbide in the nanocrystalline state. Adv. Appl. Ceram., 118(4), 196–208.
6. Chkhartishvili, L., Mikeladze, A., Chedia, R. et al. (2020) Synthesizing fine-grained powders of complex compositions B4C–TiB2–WC–Co. Solid State Sci., 108, 106439 (1–8).
7. Chkhartishvili, L., Mikeladze, A., Tsagareishvili, O. et al. (2023) Effect of cobalt additive on phases formation in boron carbide matrix composites B4C–(Ti,Zr)B2–W2B5. Solid State Sci., 145, 107339 (1–11).
8. Tsagareishvili, O., Mikeladze, A., Chedia, R. et al. (2024) Obtaining of WC–Co- and WC–TiC–Co-based ultradispersive alloys modified with B4C–TiB2 quasieutetic. Recent Prog. Mater., 6(3), 21 (1–50).
9. Radev, D.D., Ampaw, E. (2015) Classical and contemporary synthesis methods of boron carbide powders. Comp. Rend. Acad. Bulgare Sci., 68(8), 945–946.
10. Lee, J.H., Won, C.W., Joo, S.M. et al. (2000) Preparation of B4C powder from B2O3 oxide by SHS process. J. Mater. Sci. Lett., 19, 951–954.
11. Han, K.R., Kang, D.-I., Kim, Ch.-S. (2003) Preparation of B4C–Al2O3 composite powder by self-propagation high-temperature synthesis (SHS) process under high pressure. J. Korean Ceram. Soc., 40(1), 18–23.
12. Shaker, E., Sakari, M., Jalaby, M., Bafghi, M.Sh. (2015) Microwave synthesis of B4C–Al2O3 composite in a mechanically activated Al/B2O3/C powder mixture. Iranian J. Mater. Sci. Eng., 12(4), 89–99.
13. Liu, Ch. (2019) Low temperature synthesis and characterization of novel complex carbide- and boride-based materials: PhD Dissertation. Exeter, Univ. Exeter (ProQuest: 27822589) . 14. Moghdam, A.D. (2016) In-situ synthesis of aluminum-titanium diboride metal matrix hybrid nanocomposite: PhD Dissertation. Milwaukee, Univ. Wisconsin–Milwaukee, 1137: https://dc.uwm.edu/etd/1137
15. Bahramizadeh, E., Nourouzi, S., Jamshidi Aval, H. (2019) In-situ fabrication of TiC–Al2O3 and TiB2–TiC–Al2O3 composite coatings on 304 stainless steel surface using GTAW process. Kovove Mater., 57, 177–188.
16. Wang, Zh., Liu, X., Zhang, J., Bian, X. (2004) Reaction mechanism in an Al–TiO2–C system for producing in situ Al/(TiC+Al2O3) composite. J. Mater. Sci., 39, 667–669.
17. Rahbari, G.R., Saw, L.H., Hamdi, M., Yahya, R. (2009) Combustion synthesis of TiO2–Al–C/Al2O3 mixture in the presence of oxygen. J. Phys. Conf. Ser., 152, 012055.
18. Velinova, R., Todorova, S., Kovacheva, D. et al. (2023) Effect of TiO2 on Pd/La2O3–CeO2–Al2O3 systems during catalytic oxidation of methane

Suggested Citation

K. Ukleba, Z. Mirijanashvili, O. Tsagareishvili, L. Chkhartishvili (2025) Thermodynamic analysis of preparation of two key refractory boron compounds. The Paton Welding J., 10, 31-35.