 
	
  
        
	
The Paton Welding Journal, 2025, #10, 31-35 pages
Thermodynamic analysis of preparation of two key refractory boron compounds
K. Ukleba1, Z. Mirijanashvili1, O. Tsagareishvili1, L. Chkhartishvili1,2
1F. Tavadze Metallurgy and Materials Science Institute
8b Elizbar Mindeli Str., 0186, Tbilisi, Georgia
2Georgian Technical University
77 Merab Kostava Ave., 0160, Tbilisi, Georgia. E-mail: levanchkhartishvili@gtu.ge
Abstract
Thermodynamic calculations are performed to determine the optimal conditions for carrying out two chemical reactions to
obtain boron carbide and titanium diboride, important refractory boron compounds, in combination with aluminum oxide. The
accompanying phase transformations at a fixed pressure are established as a function of temperature.
alloys with variable thicknesses ranging from 45 to 65 mm while maintaining the same number of passes.
Keywords: thermodynamic analysis, temperature, enthalpy, Gibbs free energy, chemical reaction, boron carbide, titanium
diboride, aluminum oxide
Received: 18.08.2025
Received in revised form: 23.09.2025
Accepted: 24.10.2025
References
1. Chkhartishvili, L., Mikeladze, A., Tsagareishvili, O. et al.
(2018) Boron-containing nanocrystalline ceramic and metal–ceramic materials. In: Handbook of Nanomaterials for
Industrial Applications. Ed. by Ch.M. Hussain. Amsterdam,
Elsevier, 13–35.
2. Chkhartishvili, L., Tsagareishvili, O., Mikeladze, A. et al.
(2021) Highly stable boron carbide based nanocomposites.
In: Handbook of Nanomaterials and Nanocomposites for Energy
and Environmental Applications. Eds by O.V. Kharissova,
L.M.T. Martinez, B.I. Kharisov. Cham, Springer Nature,
327–351.
3. Chkhartishvili, L., Antashvili, L., Dalakishvili, L. et al. (2021)
On modeling of synthesis process of boron carbide based
nanocomposites. Condensed Matter, 6(1), 3(1–13).
4. Chkhartishvili, L., Mikeladze, A., Tsagareishvili, O. et al.
(2023) Advanced boron carbide matrix nanocomposites obtained
from liquid-charge: Focused review. Condensed Matter,
8(2), 37 (1–54).
5. Mikeladze, A., Tsagareishvili, O., Chkhartishvili, L. et al.
(2019) Production of titanium-containing metal-ceramic composites based on boron carbide in the nanocrystalline state.
Adv. Appl. Ceram., 118(4), 196–208.
6. Chkhartishvili, L., Mikeladze, A., Chedia, R. et al. (2020)
Synthesizing fine-grained powders of complex compositions
B4C–TiB2–WC–Co. Solid State Sci., 108, 106439 (1–8).
7. Chkhartishvili, L., Mikeladze, A., Tsagareishvili, O. et al.
(2023) Effect of cobalt additive on phases formation in boron
carbide matrix composites B4C–(Ti,Zr)B2–W2B5. Solid State
Sci., 145, 107339 (1–11).
8. Tsagareishvili, O., Mikeladze, A., Chedia, R. et al. (2024) Obtaining
of WC–Co- and WC–TiC–Co-based ultradispersive
alloys modified with B4C–TiB2 quasieutetic. Recent Prog.
Mater., 6(3), 21 (1–50).
9. Radev, D.D., Ampaw, E. (2015) Classical and contemporary
synthesis methods of boron carbide powders. Comp. Rend.
Acad. Bulgare Sci., 68(8), 945–946.
10. Lee, J.H., Won, C.W., Joo, S.M. et al. (2000) Preparation of
B4C powder from B2O3 oxide by SHS process. J. Mater. Sci.
Lett., 19, 951–954.
11. Han, K.R., Kang, D.-I., Kim, Ch.-S. (2003) Preparation of
B4C–Al2O3 composite powder by self-propagation high-temperature
synthesis (SHS) process under high pressure. J. Korean
Ceram. Soc., 40(1), 18–23.
12. Shaker, E., Sakari, M., Jalaby, M., Bafghi, M.Sh. (2015) Microwave
synthesis of B4C–Al2O3 composite in a mechanically
activated Al/B2O3/C powder mixture. Iranian J. Mater. Sci.
Eng., 12(4), 89–99.
13. Liu, Ch. (2019) Low temperature synthesis and characterization
of novel complex carbide- and boride-based materials:
PhD Dissertation. Exeter, Univ. Exeter (ProQuest: 27822589)
.
14. Moghdam, A.D. (2016) In-situ synthesis of aluminum-titanium
diboride metal matrix hybrid nanocomposite: PhD Dissertation.
Milwaukee, Univ. Wisconsin–Milwaukee, 1137:
https://dc.uwm.edu/etd/1137
15. Bahramizadeh, E., Nourouzi, S., Jamshidi Aval, H. (2019)
In-situ fabrication of TiC–Al2O3 and TiB2–TiC–Al2O3 composite
coatings on 304 stainless steel surface using GTAW
process. Kovove Mater., 57, 177–188.
16. Wang, Zh., Liu, X., Zhang, J., Bian, X. (2004) Reaction
mechanism in an Al–TiO2–C system for producing in situ Al/(TiC+Al2O3) composite. J. Mater. Sci., 39, 667–669.
17. Rahbari, G.R., Saw, L.H., Hamdi, M., Yahya, R. (2009) Combustion
synthesis of TiO2–Al–C/Al2O3 mixture in the presence
of oxygen. J. Phys. Conf. Ser., 152, 012055.
18. Velinova, R., Todorova, S., Kovacheva, D. et al. (2023) Effect
of TiO2 on Pd/La2O3–CeO2–Al2O3 systems during catalytic
oxidation of methane
Suggested Citation
K. Ukleba, Z. Mirijanashvili, O. Tsagareishvili, L. Chkhartishvili (2025) Thermodynamic analysis of preparation of two key refractory boron compounds. 
The Paton Welding J., 10, 31-35.