The Paton Welding Journal, 2025, #11, 10-18 pages
Research into technological processes of treatment of metals, alloys and welded joints using electromagnetic field (Review)
L.M. Lobanov1, L.I. Nyrkova1, M.O. Pashchyn1, O.L. Mikhodui1, O.M. Tymoshenko1, N.L. Todorovych1, O.M. Syzonenko3, I.P. Kondratenko2, V.V. Chopyk2, O.M. Karlov2
1E.O. Paton Electric Welding Institute of the NASU.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: svarka2000@ukr.net
2Institute of Electrodynamics of the NASU
56 Beresteiskyi Prosp., 03057, Kyiv, Ukraine
3Institute of pulse processes and technologies of the NASU
43a Bohoyavlensky Prosp., 54018, Mykolaiv, Ukraine
Abstract
An analysis of promising technologies for improving the mechanical characteristics and the stress states of metal materials
and welded joints based on the use of electromagnetic fields and their derivatives, such as electrodynamic pressure force, eddy
currents, and shock waves, was carried out. The process of electrohydropulse treatment by high-energy discharge (EPT HED
EHIPD) using a hydrocarbon liquid for the production of polydisperse mixtures used for alloying the weld metal of welded
joints as part of flux-cored wires is considered. The positive effect of micro-additives of the Ti‒TiC system modifier obtained
by EPT HED on the operational properties of the deposited metal of the 25Kh5FMS tool steel type was determined. It is shown
that treatment with a pulsed electromagnetic field (PEMF) improves the residual stress states of welded joints. New process
diagrams for the application of electrodynamic treatment (EDT) of welded joints are considered. The advantages of PEMF and
EDT of the weld metal in the welding process in comparison with treatment at room temperature are proved. The mechanism of
surface hardening of 25KhGNMT steel as a result of its pulsed barrier discharge treatment (PBD) was investigated. It is proved
that the PBD increases the dislocation density and disperses the microstructure, which has a positive effect on the mechanical
characteristics of steel. The prospects for the use of PBD for non-destructive testing of residual stress states of welded joints
are considered.
Keywords: welded joint, electromagnetic field treatment, electrodynamic treatment, residual stresses, fusion welding, surface
hardening, titanium carbide, polydisperse mixtures, residual deformations, aluminium alloys, structural steels, dislocation
density
Received: 09.06.2025
Received in revised form: 07.08.2025
Accepted: 03.11.2025
References
1. Razmyshlyaev, A.D., Ageeva, M.V. (2018) On mechanism of
weld metal structure refinement in arc welding under action
of magnetic fields (Review). The Paton Welding J., 3, 25–28.
DOI: https://doi.org/10.15407/tpwj2018.03.05
2. Dubodelov, V.I., Goryuk, M.S. (2018) The use of electromagnetic
fields and magnetohydrodynamic phenomena to intensify
the influence on metal systems: world and Ukrainian experience.
In: Science of materials: achievements and prospects.
Vol. 2. Ed. by L.M. Lobanov et al. Kyiv, Akademperiodyka,
24–50 [in Ukrainian].
3. Opara, V.S., Reznikova, L.Y., Yurchenko, E.S., Petushkov,
V.G. (1984) Influence of welded joint stiffness on reduction
of residual stresses during electrohydroimpulse processing.
Avtomaticheskaya Svarka, 7, 70–71 [in Russian].
4. Sizonenko, O., Vovchenko, A. (2014) Pulsed discharge technologies
of processing and obtainment of new materials
(Review). Machines. Technologies. Materials, 8(12), 41–44.
https://stumejournals.com/journals/mtm/2014/12/41
5. Lipyan, E.V., Sizonenko, O.N., Torpakov, A.S., Zhdanov,
A.A. (2015) Thermodynamic analysis of heterogeneous
chemical reactions in the system “mixture of Fe–Ti powders–
hydrocarbon liquid” under the influence of high-voltage
electric discharges. Visnyk NTU “KhPI”. Seriia: Tekhnika ta
Elektrofizyka Vysokykh Napruh: Zb. Nauk. Prats, 51(1160),
59–65 [in Russian].
6. Syzonenko, O.M., Prokhorenko, S.V., Lypyan, E.V. et al.
(2020) Pulsed discharge preparation of a modifier of Ti–TiC
system and its influence on the structure and properties of
the metal. Materials Sci., 56(2), 232–239. DOI: https://doi.org/10.1007/s11003-020-00421-1
7. Lobanov, L.M., Syzonenko, O.M., Holovko, V.V. et al.
(2021) Pulsed-disharge treatment of the Al–Ti–C system
modifier. The Paton Welding J., 5, 24–29. DOI: https://doi.org/10.37434/tpwj2021.05.04
8. Lobanov, L.M., Ryabtsev, I.O., Pashchyn, M.O. et al. (2023)
Wear resistance of titanium carbide-modified 25Kh5FMS deposited
metal. Strength of Materials, 55(3), 469–474. DOI:
https://doi.org/10.1007/s11223-023-00539-y
9. Ryabtsev, I.O., Babinets, A.A., Pashchin, M.O. et al. (2023)
Influence of different types of modifiers on the structure
and properties of deposited metal of the type of 25Kh5MFS
tool steel. The Paton Welding J., 5, 11–14. DOI: https://doi.org/10.37434/tpwj2023.05.02
10. Sprecher, A.F., Mannan, S.L., Conrad, H. (1986) Overview
no. 49: On the mechanisms for the electroplastic effect in
metals. Acta Metallurgica, 34(7), 1145–1162. DOI: https://doi.org/10.1016/0001-6160(86)90001-5
11. Baranov, Yu.V., Troitsky, O.A., Avramov, Y.S. (2001) Physical
bases of electric pulse and electroplastic processing and
new materials. Moscow, MGIU [in Russian].
12. Stepanov, G.V., Babutskii, A.I., Mameev, I.A. (2004)
High-density pulse current-induced unsteady stress-strain
state in a long rod. Strength of Materials, 36(4), 377–381. DOI:
https://doi.org/10.1023/B:STOM.0000041538.10830.34
13. Strizhalo, V.A., Novogrudsky, L.S., Vorobyev, E.V. (2008)
Strength of materials at cryogenic temperatures taking into account
the influence of electromagnetic fields. Vol. 1. Strength
of materials and structures: A series of monographs. Ed. by
V.T. Troshchenko. Kyiv, IPS of the NASU [in Russian].
14. Troitsky, O.A., Kalymbetov, P.U. (1981) Dependence of the
electroplastic effect in zinc on the duration of individual
pulses. Fizika Metallov i Metallovedenie, 51(5), 1056–1059
[in Russian].
15. Stepanov, G.V., Babutskii, A.I., Mameev, I.A., Olisov, A.N.
(2006) Analysis of pulse current-induced tensile stress relaxation.
Strength of Materials, 38(1), 84–91. DOI: https://doi.org/10.1007/s11223-006-0019-4
16. Strizhalo, V.A., Novogrudskij, L.S. (1997) Determination of
the electroplastic strain energy of metals. Problemy Prochnosti,
4, 38–43. https://www.scopus.com/record/display.uri?eid=2-s2.0-0031108852&origin=recordpage
17. Morris, J.W., Fultz, B., Chan, J.W., Mei, Z. (1989) The influence
of high magnetic fields on mechanical properties of
metastabile austenitic steels. Fizika Nizkikh Temperatur,
15(10), 1072–1080. DOI: https://doi.org/10.1063/10.0032269
18. Guoyi Tang, Zhuohui Xu, Miao Tang et al. (2005) Effect
of a pulsed magnetic treatment on the dislocation substructure
of a commercial high strength steel. Materials Sci. and
Eng.: A, 398(1–2), 108–112. DOI: https://doi.org/10.1016/j.msea.2005.03.003
19. Liping Ma, Wenxiang Zhao, Zhiqiang Liang et al. (2014) An
investigation on the mechanical property changing mechanism
of high speed steel by pulsed magnetic treatment. Materials
Sci. and Eng.: A, 609, 16–25. DOI: https://doi.org/10.1016/j.msea.2014.04.100
20. Batainen, O., Klamecki, B., Koepke, B. (2003) Effect of
pulsed magnetic treatment on drill wear. J. of Materials
Proc. Techn., 134(2), 190–196. DOI: https://doi.org/10.1016/S0924-0136(02)01002-6
21. Babutsky, A., Chrysanthou, A., Ioannou, J. (2009) Influence
of pulsed electric treatment on corrosion of structural
metals. Strength of Materials, 4, 387–391. DOI: https://doi.org/10.1007/s11223-009-9142-3
22. Babutsky, A., Chrysanthou, A., Ioannou, J., Mamuzic, I.
(2010) Correlation between the corrosion resistanse and the
hardness scattering of structural metals treated with a pulse
electric current. Mater. Technol., 44(2), 99–102. http://mit.imt.si/izvodi/mit102/babutsky.pdf
23. Bigyan Fang, Jinqiu Wang, Suhong Xiao (2005) Stress corrosion
cracking of X-70 pipeline steels by electropulsing
treatment in near-neutral pH solution. J. Mater. Sci. Technol.,
40(24), 6545–6552. DOI: https://doi.org/10.1007/s10853-005-1813-2
24. Golovin, Yu.I., Morgunov, R.B., Zhulikov, S.E. et al. (1998)
Influence of magnetic field on metastable structural defects
relaxation and plasticity of crystals. Vestnik TGU, 3(3), 271–
274 [in Russian].
25. Klimov, K.M., Burkhanov, Y.S., Novikov, I.I. (1985) Effect
of high conductivity electric current on the process of plastic
deformation of aluminum. Problemy Prochnosti, 6, 44–47
[in Russian].
26. Semashko, N.A., Krupsky, R.F., Kupov, A.V. (2004) Acoustic
emission during electric pulse deformation of titanium alloys.
Materialovedenie, 7, 29–33 [in Russian].
27. Stepanov, G.V., Babutskii, A.I., Mameev, I.A. et al. (2011)
Redistribution of residual welding stresses in pulsed electromagnetic
treatment. Strength of Materials, 43(3), 326–331.
DOI: https://doi.org/10.1007/s11223-011-9300-2
28. Lobanov, L.M., Pashchyn, M.O, Mikhodui, O.L. et al. (2021)
Pulsed electromagnetic field effect on residual stresses and
strains of welded joints of AMg6 aluminum alloy. Strength
of Materials, 53(6), 834–841. DOI: https://doi.org/10.1007/s11223-022-00350-1
29. Yanli Song, Lin Hua (2012) Mechanism of residual stress reduction
in low alloy steel by a low frequency alternating magnetic
treatment. J. Mater. Sci. Technol., 28(9), 803–808. DOI:
https://doi.org/10.1016/s1005-0302(12)60134-0
30. Tsaryuk, A.K., Skulsky, V.Yu., Moravetsky, S.I., Sokirko,
V.A. (2008) Influence of electromagnetic treatment on residual
welding stresses in welded joints of carbon and low-alloyed
steel. The Paton Welding J., 9, 22–25.
31. Shao Quan, Kang Jiajie, Xing Zhiguo et al. (2019) Effect
of pulsed magnetic field treatment on the residual stress
of 20Cr2Ni4A steel. J. of Magnetism and Magnetic Materials,
476, 218–224. DOI: https://doi.org/10.1016/j.jmmm.2018.12.105
32. Lobanov, L., Kondratenko, I., Zhiltsov, A. et al. (2018) Development
of post-weld electrodynamic treatment using
electric current pulses for control of stress-strain states and
improvement of life of welded structures. Materials Performance
and Characterization, 7(4), 941–955. DOI: https://doi.org/10.1520/MPC20170092
33. Han Shanguo, Lobanov, L.M., Cai Detao et al. (2016) Portable
welding deformation control equipment and deformation
treatment method thereof. European Pat. Office.
Priority Number(s): CN201510142968 20150330. Bibliographic
Data: CN104722978 (B) ― 2016-04-27 https://worldwide.espacenet.com/publicationDetails/biblio?CC=CN&NR=104722978B&KC=B&FT=D&ND=5&-date=20160427&DB=&locale=en_EP
34. Lobanov, L.M., Kondratenko, I.P., Pashchyn, M.O., Volkov,
S.S. (2021) Method for eliminating residual stresses and deformations
in welded joints and device for its implementation.
Pat. for Invention 122829, 06.01.2021 [in Ukrainian].
35. Lobanov, L.M., Kondratenko, I.P., Pashchyn, M.O., Volkov,
S.S. (2021) Method for eliminating residual stresses and deformations
in welded joints and device for its implementation.
Pat. for Invention 122933, 20.01.2021 [in Ukrainian].
36. Lobanov, L.M., Korzhik, V.M., Pashchin, M.O. et al. (2022)
Deformation-free TIG welding of AMg6 alloy with application
of electrodynamic treatment of weld metal. The
Paton Welding J., 8, 3–8. DOI: https://doi.org/10.37434/tpwj2022.08.01
37. Dubodelov, V.I., Seredenko, Ye.V., Zatulovskyi, A.S., Seredenko
V.A. (2018) Increase of properties of aluminum alloys
by the action of a permanent magnetic field on melting at
solid state. The Scientific Technical J. Metal Sci. and Treatment
of Metals, 24(4), 3–8. DOI: https://doi.org/10.15407/mom2018.04.003
38. Bobrinsky, V.I., Rodin, N.P., Fomicheva, L.F. et al. (2006)
Fusion welding method. Pat. 2288823 RF, Publ. 20.12.2006
[in Russian].
39. Akinin, K.P., Antonov, O.E., Petukhov, I.S. et al. (2010) Construction
of electromechanical energy converters of increased
efficiency. Instytut Elektrodynamiky NANU: Zb. Nauk. Prats,
26, 3–12 [in Ukrainian].
40. Antonov, O.E., Mikhalskyi, V.M., Petukhov, I.S. et al. (2012)
Investigation of processes in electromechanical and semiconductor
energy converters. Instytut Elektrodynamiky NANU:
Zb. Nauk. Prats, 32, 5–19 [in Ukrainian].
41. Lobanov, L.M., Pashchyn, M.O., Mikhodui, O.L. et al. (2025)
Scientific principles of magnetic pulse treatment of welded
joints in the process of fusion welding. In: Welding and Related
Technologies. Eds by I.V. Krivtsun et al., 183–187. DOI:
https://doi.org/10.1201/9781003518518
42. Bo Jiang, Jingtang Zheng, Shi Qiu et al. (2014) Review on
electrical discharge plasma technology for waste water.
Chemical Engineering J., 236, 348–363. DOI: https://doi.org/10.1016/j.cej.2013.09.090
43. Bozhko, I.V., Zozuljov, V.I., Kobylchak, V.V. (2016)
SOS-generator for the electric discharge technology used
pulse barrier discharge. Tekhnichna Elektrodynamika,
2, 63–68 [in Ukrainian]. DOI: https://doi.org/10.15407/techned2016.02.063
44. Bozhko, I.V., Kondratenko, I.P., Lobanov, L.M. et al.
(2023) Pulsed barrier discharge for treatment of surfaces
of 25KhGNMT steel plates. Tekhnichna Elektrodynamika,
1, 76–80 [in Ukrainian]. DOI: https://doi.org/10.15407/techned2023.01.076
45. Lobanov, L.M., Knysh, V.V., Pashchin, M.O. et al. (2023)
Nondestructive evaluation of residual stresses in welded
joints on the base of a combination of ultrasonic testing and
speckle-interferometry. Tekhnichna Diahnostyka ta Neruinivnyi
Kontrol, 2, 22–27 [in Ukrainian]. DOI: https://doi.org/10.37434/tdnk2023.02.03
46. Lobanov, L.M., Pashchyn, M.O., Mikhodui, O.L. et al. (2022)
Stress-strain state of welded joints of AMg6 alloy after electrodynamic
treatment during welding. Strength of Materials,
54(6), 983–996. DOI: https://doi.org/10.1007/s11223-023-00474-y
Suggested Citation
L.M. Lobanov, L.I. Nyrkova, M.O. Pashchyn, O.L. Mikhodui, O.M. Tymoshenko, N.L. Todorovych, O.M. Syzonenko, I.P. Kondratenko, V.V. Chopyk, O.M. Karlov (2025) Research into technological processes of treatment of metals, alloys and welded joints using electromagnetic field (Review).
The Paton Welding J., 11, 10-18.