The Paton Welding Journal, 2025, #1, 28-34 pages
Production of ferrovanadium under the conditions of electroslag melting
Yu.V. Kostetskyi, E.O. Pedchenko, M.O. Vdovin, G.O. Polishko, V.L. Petrenko, V.A. Zaytsev
E.O. Paton Electric Welding Institute of the NASU.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: y.kostetsky@paton.kiev.ua
Abstract
The electroaluminothermic process is considered for ferrovanadium production from a vanadium-containing charge mixture by
reducing vanadium oxide with aluminium in a slag layer with simultaneous electrical heating of the slag bath. The key factors
influencing the fundamental parameters of the process have been identified. Samples of final slag were examined, and chemical
composition and metal particle distribution in the slag layer were determined.
Keywords: electroslag process, ferrovanadium, electroaluminothermic reduction, slag, chemical composition, metal, inclusions
Received: 15.08.2024
Received in revised form: 30.09.2024
Accepted: 28.01.2025
References
1. Moskalyk, R.R., Alfantazi, A.M. (2003) Processing of vanadium: a review. Minerals Engineering, 16(9), 793-805.
https://doi.org/10.1016/S0892-6875(03)00213-92. Yang, B., He, J., Zhang, G. et al. (2021) Chapter 11 - Applications of vanadium in the steel industry. Vanadium. Elsevier, 267-332.
https://doi.org/10.1016/B978-0-12-818898-9.00011-53. Simandl, G.J. (2022) Vanadium as a critical material: Economic geology with emphasis on market and the main deposit types. Applied Earth Sci., 131(4), 218-236.
https://doi.org/10.1080/25726838.2022.21028834. Swinbourne, D.R., Richardson, T., Cabalteja, F. (2016) Understanding ferrovanadium smelting through computational thermodynamics modelling. Mineral Processing and Extractive Metallurgy, 125(1), 45-55.
https://doi.org/10.1179/1743285515Y.00000000195. Liu, Z., He, B., Lyu, T., Zou, Y. (2021) A review on additive manufacturing of titanium alloys for aerospace applications: Directed energy deposition and beyond Ti-6Al-4V. JOM, 73(6), 1804-1818.
https://doi.org/10.1007/s11837-021-04670-66. Villalobos, J.C., Del-Pozo, A., Campillo, B. et al. (2018) Microalloyed steels through history until 2018: Review of chemical composition, processing and hydrogen service. Metals, 8(5), 351.
https://doi.org/10.3390/met80503517. Baker, T.N. (2016) Microalloyed steels. Ironmaking & Steelmaking, 43(4), 264-307.
https://doi.org/10.1179/1743281215Y.00000000638. Kim, S., Baek, E., Jang, B. (2021) The effect of vanadium addition on the fracture and wear resistance of indefinite chilled cast iron. Materials Today Communications, 26(3), 101819.
https://doi.org/10.1016/j.mtcomm.2020.1018199. Gasik, M. (2013) Technology of vanadium ferroalloys. Handbook of Ferroalloys. Elsevier, 397-409.
https://doi.org/10.1016/C2011-0-04204-710. Yang, B., He, J., Zhang, G., Guo, J.B. (2021) Chapter 10 - Ferrovanadium. Vanadium. Elsevier, 243-266.
https://doi.org/10.1016/B978-0-12-818898-9.00010-311. Gasik, M., Dashevskii, V., Bizhanov, A. (2021) Ferroalloys: Theory and practice. Springer.
https://doi.org/10.1007/978-3-030-57502-112. Lyakishev N.P., Pliner Yu.L. (1978) Aluminothermy. Moscow, Metallurgiya [in Russian].
13. Hallstedl, B. (1990) Assessment of the CaO-Al2O3 system. J. of the American Ceramic Society, 73(1), 15-23.
https://doi.org/10.1111/j.1151-2916.1990.tb05083.x14. GOST 30756-2001: Fluxes for electroslag technologies. General specifications. Minsk, Interstate Council for Standardization, Metrology and Certification.
15. Nekrasov, O.P., Veretenchenko, B.A. (2018) Surface phenomena and disperse systems. Kharkiv, NTU KhPI.
Suggested Citation
Yu.V. Kostetskyi, E.O. Pedchenko, M.O. Vdovin, G.O. Polishko, V.L. Petrenko, V.A. Zaytsev (2025) Production of ferrovanadium under the conditions of electroslag melting.
The Paton Welding J., 01, 28-34.