Print
2025 №05 (01) DOI of Article
10.37434/tpwj2025.05.02
2025 №05 (03)

The Paton Welding Journal 2025 #05
The Paton Welding Journal, 2025, #5, 10-29 pages

Implementation and sustainability of biomass gasification using plasma technologies

S.V. Petrov1, O.I. Som2, S.G. Bondarenko3, O.V. Sanginova3, M. Ganczarski4, E. Rój4

1The Gas Institute of the NASU 39 Degtyarivska Str., 03113, Kyiv, Ukraine. E-mail: vizana.sp@gmail.com
2Plasma-Master Co., Ltd. 3 Omelian Pritsak Str., 03142, Kyiv, Ukraine
3National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” 37 Prosp. Beresteiskyi, 03056, Kyiv, Ukraine
4Hydrogenium P.S.A. (Simple Joint Stock Company) 3/27 Marii Curie-Skłodowskiej Str., Lublin, Poland, 20-029

Abstract
Waste biomass gasification technologies, especially with a focus on hydrogen production, have the potential for large-scale commercialization. The prerequisites for their development and promotion are innovative approaches to modeling, the use of traditional and new gasification mechanisms consistent with fundamental principles, and the development of new technical solutions on this basis. Ultimately, the goal is to significantly improve the gasification process’s technical, economic, and environmental performance. In this context, plasma gasification is a promising renewable energy source from various wastes, including biomass. It contributes to achieving sustainable development goals: affordable and clean energy, climate change mitigation, waste diversion and resource reuse, reinforcing the concept of a circular economy. This paper presents an analysis and assessment of the conditions for increasing gasification processes’ reliability, productivity, and quality while reducing costs, including potential barriers to applying plasma technologies. The paper presents new technological solutions to the problems facing gasification, aimed at optimizing energy flows in the gasification reactor, rational use of plasma as a concentrated energy flow, reducing electricity consumption by plasma torches, reducing the power and cost of plasma installations, as well as a radical solution to the problem of reliability of gasification equipment. The economic prospects for the transition to large-scale production, where a reduction in capital and operating costs can be expected, are considered.
Keywords: biomass gasification, plasma gasification, plasmatron, synthesis gas, gasifier, energy efficiency of the gasification process

Received: 25.03.2025
Received in revised form: 29.04.2025
Accepted: 23.06.2025

References

1. Sikarwar, V.S., Zhao, M., Clough, P. et al. (2016) An overview of advances in biomass gasification. Energy & Environmental Sci., 9(10), 2927–3304. DOI: https://doi.org/10.1039/c6ee00935b
2. World Energy Outlook 2015. https://iea.blob.core.windows. net/assets/5a314029-69c2-42a9-98ac-d1c5deeb59b3/WEO2015.pdf
3. Song, H., Yang, G., Xue, P. et al. (2022) Recent development of biomass gasification for H2 rich gas production. Applications in Energy and Combustion Sci., 10, 100059. DOI: https://doi.org/10.1016/j.jaecs.2022.100059
4. de Lasa, H., Salaices, E., Mazumder, J., Lucky, R. (2011) Catalytic steam gasification of biomass: Catalysts, thermodynamics and kinetics. Chemical Reviews, 111(9), 5404–5433. DOI: https://doi.org/10.1021/cr200024w
5. Nipattummakul, N., Ahmed, I.I., Gupta, A.K., Kerdsuwan, S. (2011) Hydrogen and syngas yield from residual branches of oil palm tree using steam gasification. Inter. J. of Hydrogen Energy, 36(6), 3835–3843. DOI: https://doi.org/10.1016/j.ijhydene.2010.04.102
6. Dincer, I. (2012) Green methods for hydrogen production. Inter. J. of Hydrogen Energy, 37(2), 1954–1971. DOI: https://doi.org/10.1016/j.ijhydene.2011.03.173
7. Franco, C., Pinto, F., Gulyurtlu, I., Cabrita, I. (2003) The study of reactions influencing the biomass steam gasification process. Fuel, 82(7), 835–842. DOI: https://doi.org/10.1016/S0016-2361(02)00313-7
8. Larsson, A., Kuba, M., Vilches, T.B. et al. (2021) Steam gasification of biomass – Typical gas quality and operational strategies derived from industrial-scale plants. Fuel Proc. Technol., 212, 106609. DOI: https://doi.org/10.1016/j.fuproc.2020.106609
9. Khan, M.J., Al-Attab, K.A. (2022) Steam gasification of biomass for hydrogen production – A review and outlook. J. of Advanced Research in Fluid Mechanics and Thermal Sci., 98(2), 175–204. DOI: https://doi.org/10.37934/arfmts.98.2.175204
10. Henriksen, U., Ahrenfeldt, J., Jensen, T.K. et al. (2006) The design, construction and operation of a 75 kW two-stage gasifier. Energy, 31(10–11), 1542–1553. DOI: https://doi.org/10.1016/j.energy.2005.05.031
11. Trippe, F., Fröhling, M., Schultmann, F. et al. (2011) Techno- economic assessment of gasification as a process step within biomass-to-liquid (BtL) fuel and chemicals production. Fuel Proc. Technol., 92(11), 2169–2184. DOI: https://doi.org/10.1016/j.fuproc.2011.06.026
12. Hasler, P., Nussbaumer, Th. (1999) Gas cleaning for IC engine applications from fixed bed biomass gasification. Biomass and Bioenergy, 16(6), 385–395. DOI: https://doi.org/10.1016/S0961-9534(99)00018-5
13. Asadullah, M. (2014) Barriers of commercial power generation using biomass gasification gas: A review. Renewable and Sustainable Energy Rev., 29, 201–215. DOI: https://doi.org/10.1016/j.rser.2013.08.074
14. Petrov, S.V., Katircioğlu, T.Y. (2020) Technological aspects of steam and water plasma. OmniSkriptum Publishing Group.
15. Zhang, Q., Dor, L., Fenigshtein, D. et al. (2011) Gasification of municipal solid waste in the plasma gasification melting process. Applied Energy, 90(1), 106–112. DOI: https://doi.org/10.1016/j.apenergy.2011.01.041
16. Sanjaya, E., Abbas, A. (2023) Plasma gasification as an alternative energy-from-waste (EFW) technology for the circular economy: An environmental review. Resources, Conservation and Recycling, 189, 106730. DOI: https://doi.org/10.1016/j.resconrec.2022.106730
17. (2008) Independent waste technology report. The alter NRG/WESTINGHOUSE plasma gasification process. http://energy. cleartheair.org.hk/wp-content/uploads/2013/09/Westinghouse_Plasma_Gasification.pdf
18. Hrabovsky, M. (2011) Thermal plasma gasification of biomass. In: Progress in Biomass and Bioenergy Production. DOI: https://doi.org/10.5772/18234
19. Lopez, G., Artetxe, M., Amutio, M. et al. (2018) Recent advances in the gasification of waste plastics. A critical overview. Renewable and Sustainable Energy Rev., 82(1), 576–596. DOI: https://doi.org/10.1016/j.rser.2017.09.032
20. Hlina, M., Hrabovsky, M., Kavka, Konrad T.M. (2014) Production of high quality syngas from argon/water plasma gasification of biomass and waste. Waste Management, 34(1), 63–66. DOI: https://doi.org/10.1016/j.wasman.2013.09.018
21. Tamošiūnas, A., Valatkevičius, P., Valinčius, V., Levinskas, R. (2016) Biomass conversion to hydrogen-rich synthesis fuels using water steam plasma. Comptes Rendus. Chimie. Inter. Renewable Energy Congress, 19(4), 433-440. DOI: 10.1016/j.crci.2015.12.002
22. Zhovtyanskij, V., Ostapchuk, M. (2022) Plasma technologies in the problem of producing “more than green hydrogen”. Gorenie i Plazmohimiya, 20(1), 11–32. DOI: https://doi.org/10.18321/cpc478
23. Obiora, N.K., Ujah, C.O., Asadu, C.O. et al. (2024) Production of hydrogen energy from biomass: Prospects and challenges. Green Technol. and Sustainability, 2(3), 100100 DOI: https://doi.org/10.1016/j.grets.2024.100100
24. Nagar, V., Kaushal, R. (2024) A review of recent advancement in plasma gasification: A promising solution for waste management and energy production. Inter. J. of Hydrogen Energy, 77(5), 405–419. DOI: https://doi.org/10.1016/j.ijhydene.2024.06.180
25. (2015) “World’s largest” gasification plant nears completion. Ed. by T. Goulding. https://www.letsrecycle.com/news/worlds-largest-gasification-plant-nears-completion/
26. Development of a commercial reactor for high-temperature plasma gasification of waste. https://www.inews24.com/view/1469770
27. Borges, P.T., Lora, E.E.S., Venturini, O.J. et al. (2024) A comprehensive technical, environmental, economic, and biometric assessment of hydrogen production through biomass gasification, including global and brazilian potentials. Sustainability, 16(21), 9213. DOI: https://doi.org/10.3390/su16219213
28. DNV Report: Hydrogen Forecast to 2050. https://aben.com.br/wp-content/uploads/2022/06/DNV_Hydrogen_Report_2022_Highres_single1.pdf
29. Ball, M., Wietschel, M. (2009) The future of hydrogen-opportunities and challenges. Inter. J. of Hydrogen Energy, 34, 615–627. DOI: https://doi.org/10.1016/j.ijhydene.2008.11.014
30. Arregi, A., Amutio, M., Lopez, G. et al. (2018) Evaluation of thermochemical routes for hydrogen production from biomass: A review. Energy Conversion and Management, 165, 696–719. DOI: https://doi.org/10.1016/j.enconman.2018.03.089
31. Oregon. Biomass energy. http://www.oregon.gov/ENERGfi/RENEW/Biomass/
32. Demirbas, A. (2005) Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress in Energy and Combustion Sci., 31(2), 171–192. DOI: https://doi.org/10.1016/j.pecs.2005.02.002
33. (2015) IEA. Technology roadmap — hydrogen and fuel cells. https://www.iea.org/reports/technology-roadmap-hydrogen-and-fuel-cells
34. Phyllis — database for biomass and waste. https://www.fao.org/4/y0909e/y0909e09.htm
35. Jia, G. (2021) Combustion characteristics and kinetic analysis of biomass pellet fuel using thermogravimetric analysis. Processes, 9(5), 868. DOI: https://doi.org/10.3390/pr9050868
36. Mason, P.E., Darvell, L.I., Jones, J.M. et al. (2015) Single particle flame-combustion studies on solid biomass fuels. Fuel, 151, 21–30. DOI: https://doi.org/10.1016/j.fuel.2014.11.088
37. Bryers, R.W. (1996) Fireside slagging, fouling, and high temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Progress in Energy and Combustion Sci., 22, (1), 29–120. DOI: https://doi.org/10.1016/0360-1285(95)00012-7
38. Mason, P.E., Riaza, J., Chalmers, H. et al. (2016) Biomass fuel flexibility in future conventional power generation. In: Proc. of 5th IET Inter. Conf. on Renewable Power Generation 2016. DOI: https://doi.org/10.1049/cp.2016.0559
39. Petrov, S., Stukhlyak, P., Bondarenko, S. et al. (2024) Steam plasma gasification of biomass using electrodeless plasmatrons. The Paton Welding J., 6, 20–28. DOI: https://doi.org/10.37434/tpwj2024.06
40. Sidek, F.N., Abdul Samad, N.A.F, Saleh, S. (2020) Review on effects of gasifying agents, temperature and equivalence ratio in biomass gasification process. In: Proc. of IOP Conf. Series: Materials Science and Engineering, Kuantan, 1‒2 October 2019, 012028. DOI: https://doi.org/10.1088/1757-899X/863/1/012028
41. Jaworski, Z., Zakrzewska, B., Pianko-Oprych, P. (2017) On thermodynamic equilibrium of carbon deposition from gaseous C‒H‒O mixtures: Updating for nanotubes. Rev. in Chemical Eng., 33(3), 217–235. DOI: https://doi.org/doi:10.1515/revce-2016-0022
42. Liu, K., Song, C., Subramani, V. (2010) Hydrogen and syngas production and purification technologies. Wiley, Hoboken, New Jersey, 533. DOI: https://doi.org/10.1002/9780470561256
43. Kagakin, E.I., Bogomolov, A.R., Shevyrev, S.A., Pribaturin, N.A. (2013) Interaction of carbonized coal with superheated water vapor. Polzunovskij Vestnik, 1, 135–138.
44. Balat, M. (2008) Hydrogen-rich gas production from biomass via pyrolysis and gasification processes and effects of catalyst on hydrogen yield. Energy Sources, Pt. A: Recovery, Utilization and Environmental Effects, 30, 552–554. DOI: https://doi.org/10.1080/15567030600817191
45. (2006) Plasma progress: Low-cost operation and clean energy at long last? https://waste-management-world.com/artikel/ plasma-progress-low-cost-operation-and-clean-energy-atlong-last
46. Zitouni, A., Voutsas, E. (2021) Modeling, optimization and cost analysis of municipal solid waste treatment with plasma gasification. Environmental Proc., 8, 747–767. DOI: https://doi.org/10.1007/s40710-021-00518-y
47. Mayoko, J.C., Lee, B., Nyazabe, S. et al. (2023) Plasma gasification, an eco-friendly solution for power generation and MSW treatment in Kinshasa, DR Congo. Open Access Library J., 10(12). DOI: https://doi.org/10.4236/oalib.1110424
48. Lourinho, G., Alves, O., Garcia, B. et al. (2023) Costs of gasification technologies for energy and fuel production: Overview, analysis, and numerical estimation. Recycling, 8(3), 49. DOI: https://doi.org/10.3390/ recycling8030049
49. Panicker, P.K., Magid, A. (2016) Microwave plasma gasification for the restoration of urban rivers and lakes, and the elimination of oceanic garbage patches. In: Proc. of 10th Inter. Conf. on Energy Sustainability Collocated with the ASME 2016 Power Conf. and the ASME 2016 14th Inter. Conf. on Fuel Cell Science, Engineering and Technology, June 26– 30, 2016, Charlotte, North Carolina, USA. ES2016-59632, V001T02A011; 14. DOI: https://doi.org/10.1115/ES2016-59632
50. Industrial microwave generators for next generation waste gasification. https://rfhic.com/case-studies/industrial-microwave-generators-for-waste-gasification-applications/
51. Petrov, S.V., Zhovtyansky, V.A. (2019) Energy efficient steam-plasma technologies for waste processing. Kyiv, Naukova Dumka [in Russian].
52. Gabbar, H.A., Darda, S.A., Damideh, V. et al. (2021) Comparative study of atmospheric pressure DC, RF, and microwave thermal plasma torches for waste to energy applications. Sustainable Energy Technologies and Assessments, 47, 101447. DOI: https://doi.org/10.1016/j.seta.2021.101447
53. Applied plasma technologies. More products: Plasma torches. https://www.plasmacombustion.com/product-torches.html
54. Leblanc, D., Dolbec, R., Guerfi, A. et al. (2017) Silicon nanopowder synthesis by inductively coupled plasma as anode for high-energy Li-ion batteries: Arrays, functional materials, and industrial nanosilicon: In: Silicon Nanomaterials Sourcebook, 463–484. DOI: https://doi.org/10.1201/9781315153551-24
55. JEOL. TP series. RF induction thermal plasma. Products. https://www.jeol.com/products/industrial/eb/TPseries.php
56. Mirek, P. (2019) Novel industrial scale radio frequency inductively coupled plasma torch. Master of applied science. Department of Mechanical and Industrial Engineering, University of Toronto. https://utoronto.scholaris.ca/server/api/core/bitstreams/b3fe4d3a-233b-421f-a5f3-8c36491dec3a/content
57. Strelko, O., Berdnychenko, Y., Pylypchuk, O. et al. (2021) Historical milestones in the development and creation of radio frequency inductively coupled plasma torches. In: Proc. of Inter. 3rd Ukraine Conf. on Electrical and Computer Engineering, 26-28 August 2021. DOI: https://doi.org/10.1109/UKRCON53503.2021.9575482
58. Bottin, B., Chazot, O., Carbonaro, M. et al. (2000) The VKI plasmatron characteristics and performance. 72 Chaussee de Waterloo B-1640 Rhode-Saint-Genese, Belgium. https://apps.dtic.mil/sti/pdfs/ADP010745.pdf
59. Merkhouf, A., Boulos, M.I. (1998) Integrated model for the radio frequency induction plasma torch and power supply system. Plasma Sources Sci. and Technology, 7(4), 599. DOI: https://doi.org/10.1088/0963-0252/7/4/017
60. Reed, T.B. (1961) Induction-coupled plasma torch. J. of Applied Physics, 32(5), 821‒824. DOI: http://dx.doi.org/10.1063/1.1736112
61. Alavi, S., Khayamian, T., Mostaghimi, J. (2017) Conical torch: The next-generation inductively coupled plasma source for spectrochemical analysis. Analytical Chemistry, 90(5), 3036–3044. DOI: http://dx.doi.org/10.1021/acs.analchem.7b04356
62. Boulos, M.I., Fauchais, P., Pfender, E. (2016) Inductively coupled radio frequency plasma torches: Handbook of Thermal Plasmas. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-12183-3_17-1
63. Chung, P.M., Liu, S.W., Mirels, H. (1963) Effect of discontinuity of surface catalycity on boundary layer flow of dissociated gas. Inter. J. of Heat and Mass Transfer, 6(3), 193–210. DOI: https://doi.org/10.1016/0017-9310(63)90106-6
64. Chazot, O., Panerai, F., Muylaert, J.M., Thoemel, J. (2010) Catalysis phenomena determination in plasmatron facility for flight experiment design (Invited). In: Proc. of 48th Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 04–07 January, 2010 Orlando, Florida. DOI: https://doi.org/10.2514/6.2010-1248
65. Danilenko, A.A. (2012) Experimental and theoretical studies of plasma gasification processes of carbon-containing technogenic waste: In: Syn. of Thesis for Cand. of Tech. Sci. Degree. Novosibirsk, 21.
66. Messerle, V.E., Ustimenko, A.B., Lavrichshev, O.A., Nugman, M.K. (2024) The gasification and pyrolysis of biomass using a plasma system. Energies, 17(22), 5594. DOI: https://doi.org/10.3390/en17225594
67. Aikas, M., Gimžauskaitė, D., Tamošiūnas, A. et al. (2024) Thermal arc air plasma application for biomass (wood pellets) gasification. Clean Technol. and Environmental Policy, 26(1), 31–43. DOI: https://doi.org/10.1007/s10098-023-02566-4
68. Tamayo-Pacheco, J.J., Peña-Pupo, L., Vázquez-Peña, A., Brito-Sauvanell, Á.L. (2020) Hydrogen-rich syngas pro duction by plasma gasification of existing biomasses in Cuba. Revista Ciencias Técnicas Agropecuarias, 29(4), 53–63. https://go.gale.com/ps/i.do?p=IFME&u=anon~f-3c66468&id=GALE%7CA652867273&v=2.1&it=r&-sid=googleScholar&asid=628dc909
69. ISC3. International Sustainable Chemistry Collaborative Centre. https://www.isc3.org › page › best-practice-detail › plasma- gasification
70. Yao, S., Zhang, Y., Xia, J. et al. (2023) Cascade utilization of energy in high temperature syngas to reduce energy consumption in biomass gasification processes. Case Studies in Thermal Engineering, 52, 103680. DOI: https://doi.org/10.1016/j.csite.2023.103680
71. Paskalov, G. (2015) RF PLASMA: From R&D to commercial applications. In: Proc. of 22nd Inter. Symp. on Plasma Chemistry, July 5–10, 2015, Antwerp, Belgium. https://www.ispc-conference.org/ispcproc/ispc22/O-23-2.pdf
72. Fazekas, P., Czégény, Z., Mink, J. et al. (2016) Decomposition of poly (vinyl chloride) in inductively coupled radiofrequency thermal plasma. Chemical Eng. J., 302(15), 163–171. DOI: https://doi.org/10.1016/j.cej.2016.05.044
73. Merkhouf, A., Boulos, M.I. (2000) Distributed energy analysis for an integrated radio frequency induction plasma system. J. of Physics D: Applied Physics, 33(13), 1581–1587. DOI: https://doi.org/0022-3727/33/13/304
74. Tanaka, Y. (2021) Recent development of new inductively coupled thermal plasmas for materials processing. Advances in Physics: X, 6(1): 1867637. DOI: https://doi.org/10.1080/23746149.2020.1867637
75. Sairem. Microwave and radio frequency. https://www.sairem.com/
76. Kraus, W., Fantz, U., Heinemann, B., Franzen, P. (2015) Solid state generator for powerful radio frequency ion sources in neutral beam injection systems. Fusion Eng. and Design, 91, 16–20. DOI: https://doi.org/10.1016/j.fusengdes.2014.11.015
77. Kuraishi, K., Akao, M., Tanaka, Y. et al. (2016) Temperature behavior in a tandem type of modulated induction thermal plasma for materials processing. J. of Physics Conf. Series, 441(1). https://doi.org/10.1088/1742-6596/441/1/012016
78. Gajjar, S., Upadhyay, D., Singh, N. et al. (2021) Experimental results of 40 kW, 1 MHz solid state high frequency power supply with inductively coupled plasma. In: Proc. of AIP Conf., 2373, 100002. DOI: https://doi.org/10.1063/5.0057477
79. Vojtovich, V., Gordeev, A., Dumanevich, A. (2010) Si, GaAs, SiC, GaN — power electronics. Comparison, new possibilities. Silovaya Elektronika, 5, 4–10.
80. Semiconductor today. https://www.semiconductor-today.com/features.shtml
81. https://www.eetrend.com/content/2021/100555218.html Debuted at CICD 2021 to empower the third-generation semiconductor industry with advanced ALD technology
82. Proc. of 9th Inter. Conf. on Power Electronics for Plasma Eng. May 14–17, 2018, Freiburg, Germany. https://publica. fraunhofer.de/entities/mainwork/477cb287-1b40-424d-9d5cac4572604026
83. Okumura, T. (2010) Inductively coupled plasma sources and applications. Physics Research Inter., 1. DOI: https://doi.org/10.1155/2010/164249
84. PSTEK. https://pstek.co.kr/wp-content/uploads/2019/12/PSTEK_Plasma-Power-Supplies.pdf
85. Georg, R., Chadwick, A.R., Dally, B.B., Herdrich, G. (2021) Power efficiency estimation of an inductive plasma generator using propellant mixtures of oxygen, carbon-dioxide and argon. Acta Astronautica, 179, 536–545. DOI: https://doi. org/10.1016/j.actaastro.2020.11.020

Suggested Citation

S.V. Petrov, O.I. Som, S.G. Bondarenko, O.V. Sanginova, M. Ganczarski, E. Rój (2025) Implementation and sustainability of biomass gasification using plasma technologies. The Paton Welding J., 05, 10-29.