The Paton Welding Journal, 2025, #5, 10-29 pages
Implementation and sustainability of biomass gasification using plasma technologies
S.V. Petrov1, O.I. Som2, S.G. Bondarenko3, O.V. Sanginova3, M. Ganczarski4, E. Rój4
1The Gas Institute of the NASU
39 Degtyarivska Str., 03113, Kyiv, Ukraine. E-mail: vizana.sp@gmail.com
2Plasma-Master Co., Ltd.
3 Omelian Pritsak Str., 03142, Kyiv, Ukraine
3National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
37 Prosp. Beresteiskyi, 03056, Kyiv, Ukraine
4Hydrogenium P.S.A. (Simple Joint Stock Company) 3/27 Marii Curie-Skłodowskiej Str., Lublin, Poland, 20-029
Abstract
Waste biomass gasification technologies, especially with a focus on hydrogen production, have the potential for large-scale
commercialization. The prerequisites for their development and promotion are innovative approaches to modeling, the use of
traditional and new gasification mechanisms consistent with fundamental principles, and the development of new technical
solutions on this basis. Ultimately, the goal is to significantly improve the gasification process’s technical, economic, and
environmental performance. In this context, plasma gasification is a promising renewable energy source from various wastes,
including biomass. It contributes to achieving sustainable development goals: affordable and clean energy, climate change mitigation,
waste diversion and resource reuse, reinforcing the concept of a circular economy. This paper presents an analysis and
assessment of the conditions for increasing gasification processes’ reliability, productivity, and quality while reducing costs,
including potential barriers to applying plasma technologies. The paper presents new technological solutions to the problems
facing gasification, aimed at optimizing energy flows in the gasification reactor, rational use of plasma as a concentrated energy
flow, reducing electricity consumption by plasma torches, reducing the power and cost of plasma installations, as well as a
radical solution to the problem of reliability of gasification equipment. The economic prospects for the transition to large-scale
production, where a reduction in capital and operating costs can be expected, are considered.
Keywords: biomass gasification, plasma gasification, plasmatron, synthesis gas, gasifier, energy efficiency of the gasification
process
Received: 25.03.2025
Received in revised form: 29.04.2025
Accepted: 23.06.2025
References
1. Sikarwar, V.S., Zhao, M., Clough, P. et al. (2016) An overview
of advances in biomass gasification. Energy & Environmental
Sci., 9(10), 2927–3304. DOI: https://doi.org/10.1039/c6ee00935b
2. World Energy Outlook 2015. https://iea.blob.core.windows.
net/assets/5a314029-69c2-42a9-98ac-d1c5deeb59b3/WEO2015.pdf
3. Song, H., Yang, G., Xue, P. et al. (2022) Recent development
of biomass gasification for H2 rich gas production. Applications
in Energy and Combustion Sci., 10, 100059. DOI:
https://doi.org/10.1016/j.jaecs.2022.100059
4. de Lasa, H., Salaices, E., Mazumder, J., Lucky, R. (2011) Catalytic
steam gasification of biomass: Catalysts, thermodynamics
and kinetics. Chemical Reviews, 111(9), 5404–5433. DOI:
https://doi.org/10.1021/cr200024w
5. Nipattummakul, N., Ahmed, I.I., Gupta, A.K., Kerdsuwan, S.
(2011) Hydrogen and syngas yield from residual branches of
oil palm tree using steam gasification. Inter. J. of Hydrogen
Energy, 36(6), 3835–3843. DOI: https://doi.org/10.1016/j.ijhydene.2010.04.102
6. Dincer, I. (2012) Green methods for hydrogen production. Inter.
J. of Hydrogen Energy, 37(2), 1954–1971. DOI: https://doi.org/10.1016/j.ijhydene.2011.03.173
7. Franco, C., Pinto, F., Gulyurtlu, I., Cabrita, I. (2003) The
study of reactions influencing the biomass steam gasification
process. Fuel, 82(7), 835–842. DOI: https://doi.org/10.1016/S0016-2361(02)00313-7
8. Larsson, A., Kuba, M., Vilches, T.B. et al. (2021) Steam
gasification of biomass – Typical gas quality and operational
strategies derived from industrial-scale plants. Fuel
Proc. Technol., 212, 106609. DOI: https://doi.org/10.1016/j.fuproc.2020.106609
9. Khan, M.J., Al-Attab, K.A. (2022) Steam gasification of
biomass for hydrogen production – A review and outlook.
J. of Advanced Research in Fluid Mechanics and Thermal
Sci., 98(2), 175–204. DOI: https://doi.org/10.37934/arfmts.98.2.175204
10. Henriksen, U., Ahrenfeldt, J., Jensen, T.K. et al. (2006) The
design, construction and operation of a 75 kW two-stage
gasifier. Energy, 31(10–11), 1542–1553. DOI: https://doi.org/10.1016/j.energy.2005.05.031
11. Trippe, F., Fröhling, M., Schultmann, F. et al. (2011) Techno-
economic assessment of gasification as a process step
within biomass-to-liquid (BtL) fuel and chemicals production.
Fuel Proc. Technol., 92(11), 2169–2184. DOI: https://doi.org/10.1016/j.fuproc.2011.06.026
12. Hasler, P., Nussbaumer, Th. (1999) Gas cleaning for IC engine
applications from fixed bed biomass gasification. Biomass
and Bioenergy, 16(6), 385–395. DOI: https://doi.org/10.1016/S0961-9534(99)00018-5
13. Asadullah, M. (2014) Barriers of commercial power generation
using biomass gasification gas: A review. Renewable
and Sustainable Energy Rev., 29, 201–215. DOI: https://doi.org/10.1016/j.rser.2013.08.074
14. Petrov, S.V., Katircioğlu, T.Y. (2020) Technological aspects
of steam and water plasma. OmniSkriptum Publishing Group.
15. Zhang, Q., Dor, L., Fenigshtein, D. et al. (2011) Gasification
of municipal solid waste in the plasma gasification melting
process. Applied Energy, 90(1), 106–112. DOI: https://doi.org/10.1016/j.apenergy.2011.01.041
16. Sanjaya, E., Abbas, A. (2023) Plasma gasification as an alternative
energy-from-waste (EFW) technology for the circular
economy: An environmental review. Resources, Conservation
and Recycling, 189, 106730. DOI: https://doi.org/10.1016/j.resconrec.2022.106730
17. (2008) Independent waste technology report. The alter NRG/WESTINGHOUSE plasma gasification process. http://energy.
cleartheair.org.hk/wp-content/uploads/2013/09/Westinghouse_Plasma_Gasification.pdf
18. Hrabovsky, M. (2011) Thermal plasma gasification of biomass.
In: Progress in Biomass and Bioenergy Production.
DOI: https://doi.org/10.5772/18234
19. Lopez, G., Artetxe, M., Amutio, M. et al. (2018) Recent advances
in the gasification of waste plastics. A critical overview.
Renewable and Sustainable Energy Rev., 82(1), 576–596. DOI: https://doi.org/10.1016/j.rser.2017.09.032
20. Hlina, M., Hrabovsky, M., Kavka, Konrad T.M. (2014) Production
of high quality syngas from argon/water plasma gasification
of biomass and waste. Waste Management, 34(1),
63–66. DOI: https://doi.org/10.1016/j.wasman.2013.09.018
21. Tamošiūnas, A., Valatkevičius, P., Valinčius, V., Levinskas,
R. (2016) Biomass conversion to hydrogen-rich synthesis
fuels using water steam plasma. Comptes Rendus. Chimie.
Inter. Renewable Energy Congress, 19(4), 433-440. DOI:
10.1016/j.crci.2015.12.002
22. Zhovtyanskij, V., Ostapchuk, M. (2022) Plasma technologies
in the problem of producing “more than green hydrogen”.
Gorenie i Plazmohimiya, 20(1), 11–32. DOI: https://doi.org/10.18321/cpc478
23. Obiora, N.K., Ujah, C.O., Asadu, C.O. et al. (2024) Production
of hydrogen energy from biomass: Prospects and challenges.
Green Technol. and Sustainability, 2(3), 100100 DOI:
https://doi.org/10.1016/j.grets.2024.100100
24. Nagar, V., Kaushal, R. (2024) A review of recent advancement
in plasma gasification: A promising solution for waste
management and energy production. Inter. J. of Hydrogen
Energy, 77(5), 405–419. DOI: https://doi.org/10.1016/j.ijhydene.2024.06.180
25. (2015) “World’s largest” gasification plant nears completion.
Ed. by T. Goulding. https://www.letsrecycle.com/news/worlds-largest-gasification-plant-nears-completion/
26. Development of a commercial reactor for high-temperature
plasma gasification of waste. https://www.inews24.com/view/1469770
27. Borges, P.T., Lora, E.E.S., Venturini, O.J. et al. (2024) A comprehensive
technical, environmental, economic, and biometric
assessment of hydrogen production through biomass gasification,
including global and brazilian potentials. Sustainability,
16(21), 9213. DOI: https://doi.org/10.3390/su16219213
28. DNV Report: Hydrogen Forecast to 2050. https://aben.com.br/wp-content/uploads/2022/06/DNV_Hydrogen_Report_2022_Highres_single1.pdf
29. Ball, M., Wietschel, M. (2009) The future of hydrogen-opportunities
and challenges. Inter. J. of Hydrogen Energy, 34, 615–627. DOI: https://doi.org/10.1016/j.ijhydene.2008.11.014
30. Arregi, A., Amutio, M., Lopez, G. et al. (2018) Evaluation
of thermochemical routes for hydrogen production
from biomass: A review. Energy Conversion and Management,
165, 696–719. DOI: https://doi.org/10.1016/j.enconman.2018.03.089
31. Oregon. Biomass energy. http://www.oregon.gov/ENERGfi/RENEW/Biomass/
32. Demirbas, A. (2005) Potential applications of renewable energy
sources, biomass combustion problems in boiler power
systems and combustion related environmental issues. Progress
in Energy and Combustion Sci., 31(2), 171–192. DOI:
https://doi.org/10.1016/j.pecs.2005.02.002
33. (2015) IEA. Technology roadmap — hydrogen and fuel cells.
https://www.iea.org/reports/technology-roadmap-hydrogen-and-fuel-cells
34. Phyllis — database for biomass and waste. https://www.fao.org/4/y0909e/y0909e09.htm
35. Jia, G. (2021) Combustion characteristics and kinetic analysis
of biomass pellet fuel using thermogravimetric analysis.
Processes, 9(5), 868. DOI: https://doi.org/10.3390/pr9050868
36. Mason, P.E., Darvell, L.I., Jones, J.M. et al. (2015) Single particle
flame-combustion studies on solid biomass fuels. Fuel,
151, 21–30. DOI: https://doi.org/10.1016/j.fuel.2014.11.088
37. Bryers, R.W. (1996) Fireside slagging, fouling, and high temperature
corrosion of heat-transfer surface due to impurities
in steam-raising fuels. Progress in Energy and Combustion
Sci., 22, (1), 29–120. DOI: https://doi.org/10.1016/0360-1285(95)00012-7
38. Mason, P.E., Riaza, J., Chalmers, H. et al. (2016) Biomass
fuel flexibility in future conventional power generation. In:
Proc. of 5th IET Inter. Conf. on Renewable Power Generation
2016. DOI: https://doi.org/10.1049/cp.2016.0559
39. Petrov, S., Stukhlyak, P., Bondarenko, S. et al. (2024) Steam
plasma gasification of biomass using electrodeless plasmatrons.
The Paton Welding J., 6, 20–28. DOI: https://doi.org/10.37434/tpwj2024.06
40. Sidek, F.N., Abdul Samad, N.A.F, Saleh, S. (2020) Review
on effects of gasifying agents, temperature and equivalence
ratio in biomass gasification process. In: Proc. of IOP Conf.
Series: Materials Science and Engineering, Kuantan, 1‒2
October 2019, 012028. DOI: https://doi.org/10.1088/1757-899X/863/1/012028
41. Jaworski, Z., Zakrzewska, B., Pianko-Oprych, P. (2017) On
thermodynamic equilibrium of carbon deposition from gaseous
C‒H‒O mixtures: Updating for nanotubes. Rev. in Chemical
Eng., 33(3), 217–235. DOI: https://doi.org/doi:10.1515/revce-2016-0022
42. Liu, K., Song, C., Subramani, V. (2010) Hydrogen and syngas
production and purification technologies. Wiley, Hoboken, New
Jersey, 533. DOI: https://doi.org/10.1002/9780470561256
43. Kagakin, E.I., Bogomolov, A.R., Shevyrev, S.A., Pribaturin,
N.A. (2013) Interaction of carbonized coal with superheated
water vapor. Polzunovskij Vestnik, 1, 135–138.
44. Balat, M. (2008) Hydrogen-rich gas production from biomass
via pyrolysis and gasification processes and effects of catalyst
on hydrogen yield. Energy Sources, Pt. A: Recovery, Utilization
and Environmental Effects, 30, 552–554. DOI: https://doi.org/10.1080/15567030600817191
45. (2006) Plasma progress: Low-cost operation and clean energy
at long last? https://waste-management-world.com/artikel/
plasma-progress-low-cost-operation-and-clean-energy-atlong-last
46. Zitouni, A., Voutsas, E. (2021) Modeling, optimization and
cost analysis of municipal solid waste treatment with plasma
gasification. Environmental Proc., 8, 747–767. DOI: https://doi.org/10.1007/s40710-021-00518-y
47. Mayoko, J.C., Lee, B., Nyazabe, S. et al. (2023) Plasma gasification,
an eco-friendly solution for power generation and
MSW treatment in Kinshasa, DR Congo. Open Access Library
J., 10(12). DOI: https://doi.org/10.4236/oalib.1110424
48. Lourinho, G., Alves, O., Garcia, B. et al. (2023) Costs of gasification
technologies for energy and fuel production: Overview,
analysis, and numerical estimation. Recycling, 8(3), 49.
DOI: https://doi.org/10.3390/ recycling8030049
49. Panicker, P.K., Magid, A. (2016) Microwave plasma gasification
for the restoration of urban rivers and lakes, and the
elimination of oceanic garbage patches. In: Proc. of 10th Inter.
Conf. on Energy Sustainability Collocated with the ASME
2016 Power Conf. and the ASME 2016 14th Inter. Conf. on
Fuel Cell Science, Engineering and Technology, June 26–
30, 2016, Charlotte, North Carolina, USA. ES2016-59632,
V001T02A011; 14. DOI: https://doi.org/10.1115/ES2016-59632
50. Industrial microwave generators for next generation waste
gasification. https://rfhic.com/case-studies/industrial-microwave-generators-for-waste-gasification-applications/
51. Petrov, S.V., Zhovtyansky, V.A. (2019) Energy efficient
steam-plasma technologies for waste processing. Kyiv, Naukova
Dumka [in Russian].
52. Gabbar, H.A., Darda, S.A., Damideh, V. et al. (2021) Comparative
study of atmospheric pressure DC, RF, and microwave
thermal plasma torches for waste to energy applications. Sustainable
Energy Technologies and Assessments, 47, 101447.
DOI: https://doi.org/10.1016/j.seta.2021.101447
53. Applied plasma technologies. More products: Plasma torches.
https://www.plasmacombustion.com/product-torches.html
54. Leblanc, D., Dolbec, R., Guerfi, A. et al. (2017) Silicon nanopowder
synthesis by inductively coupled plasma as anode for
high-energy Li-ion batteries: Arrays, functional materials, and
industrial nanosilicon: In: Silicon Nanomaterials Sourcebook,
463–484. DOI: https://doi.org/10.1201/9781315153551-24
55. JEOL. TP series. RF induction thermal plasma. Products.
https://www.jeol.com/products/industrial/eb/TPseries.php
56. Mirek, P. (2019) Novel industrial scale radio frequency inductively
coupled plasma torch. Master of applied science. Department
of Mechanical and Industrial Engineering, University
of Toronto. https://utoronto.scholaris.ca/server/api/core/bitstreams/b3fe4d3a-233b-421f-a5f3-8c36491dec3a/content
57. Strelko, O., Berdnychenko, Y., Pylypchuk, O. et al. (2021)
Historical milestones in the development and creation of radio
frequency inductively coupled plasma torches. In: Proc.
of Inter. 3rd Ukraine Conf. on Electrical and Computer Engineering,
26-28 August 2021. DOI: https://doi.org/10.1109/UKRCON53503.2021.9575482
58. Bottin, B., Chazot, O., Carbonaro, M. et al. (2000) The VKI
plasmatron characteristics and performance. 72 Chaussee de
Waterloo B-1640 Rhode-Saint-Genese, Belgium. https://apps.dtic.mil/sti/pdfs/ADP010745.pdf
59. Merkhouf, A., Boulos, M.I. (1998) Integrated model for the
radio frequency induction plasma torch and power supply system.
Plasma Sources Sci. and Technology, 7(4), 599. DOI:
https://doi.org/10.1088/0963-0252/7/4/017
60. Reed, T.B. (1961) Induction-coupled plasma torch. J.
of Applied Physics, 32(5), 821‒824. DOI: http://dx.doi.org/10.1063/1.1736112
61. Alavi, S., Khayamian, T., Mostaghimi, J. (2017) Conical
torch: The next-generation inductively coupled plasma
source for spectrochemical analysis. Analytical Chemistry,
90(5), 3036–3044. DOI: http://dx.doi.org/10.1021/acs.analchem.7b04356
62. Boulos, M.I., Fauchais, P., Pfender, E. (2016) Inductively coupled
radio frequency plasma torches: Handbook of Thermal
Plasmas. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-12183-3_17-1
63. Chung, P.M., Liu, S.W., Mirels, H. (1963) Effect of discontinuity
of surface catalycity on boundary layer flow of dissociated
gas. Inter. J. of Heat and Mass Transfer, 6(3), 193–210.
DOI: https://doi.org/10.1016/0017-9310(63)90106-6
64. Chazot, O., Panerai, F., Muylaert, J.M., Thoemel, J. (2010)
Catalysis phenomena determination in plasmatron facility for
flight experiment design (Invited). In: Proc. of 48th Aerospace
Sciences Meeting Including the New Horizons Forum and
Aerospace Exposition, 04–07 January, 2010 Orlando, Florida.
DOI: https://doi.org/10.2514/6.2010-1248
65. Danilenko, A.A. (2012) Experimental and theoretical studies
of plasma gasification processes of carbon-containing technogenic
waste: In: Syn. of Thesis for Cand. of Tech. Sci. Degree.
Novosibirsk, 21.
66. Messerle, V.E., Ustimenko, A.B., Lavrichshev, O.A., Nugman,
M.K. (2024) The gasification and pyrolysis of biomass
using a plasma system. Energies, 17(22), 5594. DOI: https://doi.org/10.3390/en17225594
67. Aikas, M., Gimžauskaitė, D., Tamošiūnas, A. et al. (2024)
Thermal arc air plasma application for biomass (wood pellets)
gasification. Clean Technol. and Environmental Policy, 26(1),
31–43. DOI: https://doi.org/10.1007/s10098-023-02566-4
68. Tamayo-Pacheco, J.J., Peña-Pupo, L., Vázquez-Peña, A.,
Brito-Sauvanell, Á.L. (2020) Hydrogen-rich syngas pro
duction by plasma gasification of existing biomasses in
Cuba. Revista Ciencias Técnicas Agropecuarias, 29(4),
53–63. https://go.gale.com/ps/i.do?p=IFME&u=anon~f-3c66468&id=GALE%7CA652867273&v=2.1&it=r&-sid=googleScholar&asid=628dc909
69. ISC3. International Sustainable Chemistry Collaborative Centre.
https://www.isc3.org › page › best-practice-detail › plasma-
gasification
70. Yao, S., Zhang, Y., Xia, J. et al. (2023) Cascade utilization of
energy in high temperature syngas to reduce energy consumption
in biomass gasification processes. Case Studies in Thermal
Engineering, 52, 103680. DOI: https://doi.org/10.1016/j.csite.2023.103680
71. Paskalov, G. (2015) RF PLASMA: From R&D to commercial
applications. In: Proc. of 22nd Inter. Symp. on Plasma
Chemistry, July 5–10, 2015, Antwerp, Belgium. https://www.ispc-conference.org/ispcproc/ispc22/O-23-2.pdf
72. Fazekas, P., Czégény, Z., Mink, J. et al. (2016) Decomposition
of poly (vinyl chloride) in inductively coupled radiofrequency
thermal plasma. Chemical Eng. J., 302(15), 163–171. DOI:
https://doi.org/10.1016/j.cej.2016.05.044
73. Merkhouf, A., Boulos, M.I. (2000) Distributed energy analysis
for an integrated radio frequency induction plasma system.
J. of Physics D: Applied Physics, 33(13), 1581–1587. DOI:
https://doi.org/0022-3727/33/13/304
74. Tanaka, Y. (2021) Recent development of new inductively
coupled thermal plasmas for materials processing. Advances
in Physics: X, 6(1): 1867637. DOI: https://doi.org/10.1080/23746149.2020.1867637
75. Sairem. Microwave and radio frequency. https://www.sairem.com/
76. Kraus, W., Fantz, U., Heinemann, B., Franzen, P. (2015) Solid
state generator for powerful radio frequency ion sources in
neutral beam injection systems. Fusion Eng. and Design, 91,
16–20. DOI: https://doi.org/10.1016/j.fusengdes.2014.11.015
77. Kuraishi, K., Akao, M., Tanaka, Y. et al. (2016) Temperature
behavior in a tandem type of modulated induction thermal
plasma for materials processing. J. of Physics Conf. Series,
441(1). https://doi.org/10.1088/1742-6596/441/1/012016
78. Gajjar, S., Upadhyay, D., Singh, N. et al. (2021) Experimental
results of 40 kW, 1 MHz solid state high frequency power
supply with inductively coupled plasma. In: Proc. of AIP
Conf., 2373, 100002. DOI: https://doi.org/10.1063/5.0057477
79. Vojtovich, V., Gordeev, A., Dumanevich, A. (2010) Si, GaAs,
SiC, GaN — power electronics. Comparison, new possibilities.
Silovaya Elektronika, 5, 4–10.
80. Semiconductor today. https://www.semiconductor-today.com/features.shtml
81. https://www.eetrend.com/content/2021/100555218.html Debuted
at CICD 2021 to empower the third-generation semiconductor
industry with advanced ALD technology
82. Proc. of 9th Inter. Conf. on Power Electronics for Plasma
Eng. May 14–17, 2018, Freiburg, Germany. https://publica.
fraunhofer.de/entities/mainwork/477cb287-1b40-424d-9d5cac4572604026
83. Okumura, T. (2010) Inductively coupled plasma sources and
applications. Physics Research Inter., 1. DOI: https://doi.org/10.1155/2010/164249
84. PSTEK. https://pstek.co.kr/wp-content/uploads/2019/12/PSTEK_Plasma-Power-Supplies.pdf
85. Georg, R., Chadwick, A.R., Dally, B.B., Herdrich, G. (2021)
Power efficiency estimation of an inductive plasma generator
using propellant mixtures of oxygen, carbon-dioxide and
argon. Acta Astronautica, 179, 536–545. DOI: https://doi.
org/10.1016/j.actaastro.2020.11.020
Suggested Citation
S.V. Petrov, O.I. Som, S.G. Bondarenko, O.V. Sanginova, M. Ganczarski, E. Rój (2025) Implementation and sustainability of biomass gasification using plasma technologies.
The Paton Welding J., 05, 10-29.