Журнал «Автоматичне зварювання», № 5, 2023, с. 27-36
Матеріали і технологічні підходи до зварювання комбінованих зʼєднань між мартенситними і аустенітними сталями, які використовуються в енергомашинобудуванні (Огляд)
М.О. Німко, В.Ю. Скульський, Т.В. Іваненко
ІЕЗ ім. Є.О. Патона НАН України. 03150, м. Київ, вул. Казимира Малевича, 11. E-mail: office@paton.kiev.ua
Надано огляд недавньої зарубіжної дослідницької літератури, присвяченої вибору зварювальних матеріалів і актуальним
підходам до зварювання комбінованих зʼєднань між мартенситними і аустенітними сталями, що широко застосовуються
в даний момент у всьому світі і в тому числі й у вітчизняному енергомашинобудуванні. Розглянуто характерні представники мартенситних та аустенітних сталей; вказано проблеми, що виникають в зʼєднаннях різнорідних сталей при
високотемпературній експлуатації, зокрема, процес дифузії вуглецю від менш легованої сталі до більш легованої та
виникнення термічних напружень внаслідок різниці в коефіцієнтах термічного розширення поєднуваних сталей; описано технологічні підходи для зменшення негативного впливу вказаних вище факторів, а також наведено перспективні
зварювальні матеріали, які використовуються при виготовленні таких зʼєднань, та проведено їх порівняльний аналіз. В
кінці огляду приведено таблицю, в якій літературні посилання класифіковано в залежності від марки поєднуваних сталей та зварювальних матеріалів, що використовувалися при виготовленні зварних з’єднань у відповідних літературних
джерелах. Бібліогр. 47, табл. 4, рис. 8.
Ключові слова: зварювальні матеріали, з’єднання різнорідних сталей, мартенситні сталі, аустенітні сталі, нікелеві
сплави, дифузія вуглецю, зневуглецьований прошарок
Надійшла до редакції 12.04.2023
Список літератури
1. Shibli, A. (2014) Coal Power Plant Materials and Life Assessment.
Woodhead Publishing.
2. Huysmans, S., Vekeman, J., Hautfenne, C. (2017) Dissimilar
metal welds between 9Cr creep strength enhanced ferritic
steel and advanced stainless steels–creep rupture test results
and microstructural investigations. Weld World, 61, 341–350.
3. Dak, G., Pandey, C. (2020) A critical review on dissimilar
welds joint between martensitic and austenitic steel for power
plant application. Journal of Manufacturing Processes, 58,
377–406.
4. Bhaduri, A. K., Venkadesan, S., Rodriguez, P., Mukunda, P.
G. (1994) Transition metal joints for steam generators-An
overview. International Journal of Pressure Vessels and Piping,
58(3) 251–265.
5. Wu, Q., Xua, Q., Jianga, Y., Gonga, J. (2020) Effect of carbon
migration on mechanical properties of dissimilar weld joint.
Engineering Failure Analysis, 117, 104935, 1–10.
6. Zhang, W.-Ch., Zhu, M.-L., Wang, K., Xuan, F.-Zh. (2018)
Failure mechanisms and design of dissimilar welds of 9 %Cr
and CrMoV steels up to very high cycle fatigue regime. International
Journal of Fatigue, 113, 367–376.
7. Yong, J., Zuo, Zh., Jianming, G. (2015) Carbon diffusion and its
effect on high temperature creep life of Cr5Mo/A302 dissimilar
welded joint. Acta Metallurgica Sinica, 51 (4), 393–399.
8. Frei, J., Alexandrov, B. T., Rethmeier, M. (2019) Low heat
input gas metal arc welding for dissimilar metal weld overlays
part III: hydrogen-assisted cracking susceptibility. Welding
in the World, 63, 591–598.
9. Ul-Hamid, A., Tawancy, H.M., Abbas, N.M. (2005) Failure
of weld joints between carbon steel pipe and 304 stainless
steel elbows. Engineering Failure Analysis, 12, 181–191.
10. Sireesha, M., Albert, S. K., Shankar, V., Sundaresan, S.
(2000) A comparative evaluation of welding consumables
for dissimilar welds between 316LN austenitic stainless steel
and Alloy 800. Journal of Nuclear Materials, 279, 65–76.
11. Singh, S., Singh, A.B., Kumar, M. et al. (2021) Dissimilar
Metal Welds used in AUSC Power Plant, Fabrication and
Structural Integrity Issues. IOP Conf. Series: Materials Science
and Engineering, 1017, 012022.
12. Karthick, K., Malarvizhi, S., Balasubramanian, V., Gourav
Rao, A. (2018) Tensile properties variation across the dissimilar
metal weld joint between modified 9Cr–1Mo ferritic
steel and 316LN stainless steel at RT and 550 °C. Metallography,
Microstructure and Analysis, 7, 209–221.
13. Lee, H.-Y., Lee, S.-H., Kim, J.-B., Lee, J.-H. (2007) Creep–
fatigue damage for a structure with dissimilar metal welds of
modified 9Cr–1Mo steel and 316L stainless steel. International
Journal of Fatigue, 29, 1868–1879.
14. Mahajan, S., Chhibber, R. (2020) Investigations on dissimilar
welding of P91/SS304L using Nickel-based electrodes.
Materials and Manufacturing Processes, 35(9), 1010–1023.
15. Sireesha, M., Shankar, V., Albert, S. K., Sundaresan, S.
(2000) Microstructural features of dissimilar welds between
316LN austenitic stainless steel and alloy 800. Materials Science
and Engineering, A292, 74–82.
16. Sireesha, M., Albert, S. K., Sundaresan, S. (2002) Thermal
cycling of transition joints between modified 9Cr–1Mo steel
and Alloy 800 for steam generator application. International
Journal of Pressure Vessels and Piping, 79, 819–827.
17. Sireesha, M., Albert, S. K., Sundaresan, S. (2003) Metallurgical
changes and mechanical behavior during high temperature aging
of welds between Alloy 800 and 316LN austenitic stainless
steel. Materials Science and Technology, 19(10), 1411–1417.
18. Sireesha, M., Albert, S. K., Sundaresan, S. (2005) Influence
of high-temperature exposure on the microstructure and mechanical
properties of dissimilar metal welds between modified
9Cr-1Mo steel and Alloy 800. Metallurgical and Materials
Transactions A, 36a, 1495–1506.
19. Laha, K., Chandravathi, K.S., Parameswaran, P. et al. (2012)
A comparison of creep rupture strength of ferritic/austenitic
dissimilar weld joints of different grades of Cr–Mo ferritic
steels. Metallurgical and Materials Transactions A, 43A,
1174–1186.
20. Brentrup, G.J., Snowden, B.S., DuPont, J.N., Grenestedt,
J.L. (2012) Design considerations of graded transition joints
for welding dissimilar alloys. Welding Journal, 91, 252–259.
21. Akram, J., Kalvala, P.R., Misra, M., Charit, I. (2017) Creep
behavior of dissimilar metal weld joints between P91 and AISI
304. Material Science and Engineering A, 688, 396–406.
22. Akram, J., Kalvala, P.R., Chalavadi, P., Misra, M. (2018)
Dissimilar metal weld joints of P91/Ni alloy: microstructural
characterization of HAZ of P91 and stress analysis at the
weld interfaces. Journal of Materials Engineering and Performance,
27(8), 4115–4128.
23. Siefert, J.A., Tanzosh, J.M., Shingledecker, J.P. (2010) Weldability
of EPRI P87. In: Advances in materials technology for
fossil power plants: Proceedings from the 6th International
Conference, August 31–September 3, 2010, Santa Fe, New
Mexico, USA, 995–1013.
24. Siefert, J.A., Tanzosh, J.M., Shingledecker, J.P. et .al. (2011)
EPRI P87: A Promising New Filler Metal for Dissimilar Metal
Welding. Welding Journal, 90(3), 30–34.
25. Anand, R., Sudha, C., Karthikeyan, T. et al. (2009) Effectiveness
of Ni-based diffusion barriers in preventing hard zone formation
in ferritic steel joints. Journal of Materials Science, 44,
257–265.
26. Urzynicok, M., Jachym, R., Kwiecinski, K. et al. (2013) Application
of EPRI87 in dissimilar welding austenitic-martensitic
welded joints of TEMPALOY AA-1 and T92 steel
grades. In: Advances in materials technology for fossil power
plants: Proceedings from the 7th International Conference,
October 22–25, 2013 Waikoloa, Hawaii, USA, 992–1005.
27. Coleman, K., Gandy, D. (2007) Alternative filler materials
for DMWs involving P91 materials. In: Advances in materials
technology for fossil power plants: Proceedings from the
5th International Conference, October 3–5, 2007, Marco Island,
Florida, USA, 940–967.
28. Sirohi, S., Pandey, C., Goyal, A. (2021) Role of the Ni-based
filler (IN625) and heat-treatment on the mechanical performance
of the GTA welded dissimilar joint of P91 and SS304H
steel. Journal of Manufacturing Processes, 65, 174–189.
29. Thakare, J.G., Pandey, C., Mahapatra, M.M., Mulik, R.S.
(2019) An assessment for mechanical and microstructure behavior
of dissimilar material welded joint between nuclear
grade martensitic P91 and austenitic SS304 L steel. Journal
of Manufacturing Processes, 48, 249–259.
30. Mittal, R., Sidhu, B.S. (2015) Microstructures and mechanical
properties of dissimilar T91/347H steel weldments. Journal
of Materials Processing Technology, 220, 76–86.
31. Senthil, T.S., Siva Kumar, G. (2015) Dissimilar steel welding
of super heater coils for power boiler applications. American
Journal of Materials Research, 2(5), 44–49.
32. Arunkumar, N., Duraisamy, P., Veeramanikandan, S. (2012)
Evaluation of mechanical properties of dissimilar metal tube
welded joints using inert gas welding. International Journal
of Engineering Research and Applications, 2(5), 1709–1717.
33. Liang, Z., Gui, Y., Zhao, Q. (2018) Investigation of microstructures
and mechanical properties of T92 martensitic
steel/Super304 austenitic steel weld joints made with three
welding consumables. Archives of Metallurgy and Materials,
63(3), 1249–1256.
34. Cao, J., Gong, Y., Zhu, K. et al. (2011) Microstructure and
mechanical properties of dissimilar materials joints between
T92 martensitic and S304H austenitic steels. Materials and
Design, 32, 2763–2770.
35. Chen, G., Zhang, Q., Liu, J. et al. (2013) Microstructures and
mechanical properties of T92/Super304H dissimilar steel
weld joints after high-temperature ageing. Materials and Design,
44, 469–475.
36. Sharma, P., Kumar Dwivedi, D. (2019) Comparative study of
activated flux-GTAW and multipass-GTAW dissimilar P92
steel-304H ASS joints. Materials and Manufacturing Processes,
34(11), 1195–1204.
37. Xu, L., Wang, Y., Jing, H. et al. (2016) Deformation Mechanism
and Microstructure Evolution of T92/S30432 Dissimilar
Welded Joint During Creep. Journal of Materials Engineering
and Performance, 25, 3960–3971.
38. Liang, Z., Zhao, Q., Deng, J., Wang, Y. (2017) Influence of
aging treatment on the microstructure and mechanical properties
of T92/Super 304H dissimilar metal welds. Materials
at High Temperatures, 35(2), 1–8.
39. Čiripová, L., Falat, L., Ševc, P. et al. (2018) Ageing effects
on room-temperature tensile properties and fracture behavior
of quenched and tempered T92/TP316H dissimilar welded
joints with Ni-based weld metal. Metals, 8, 791–806.
40. Falat, L., Výrostková, A., Svoboda, M., Milkovič, O. (2011)
The influence of PWHT regime on microstructure and creep
rupture behaviour of dissimilar T92/TP316H ferritic/austenitic
welded joints with Ni-based filler metal. Kovove Materialy,
49 (6), 417–426.
41. Falat, L., Čiripová, L., Kepič, J. et al. (2014) Correlation between
microstructure and creep performance of martensitic/
austenitic transition weldment in dependence of its post-weld
heat treatment. Engineering Failure Analysis, 40, 141–152.
42. Falat, L., Kepič, J., Čiripová, L. et al. (2016) The effects of
postweld heat treatment and isothermal aging on T92 steel
heat-affected zone mechanical properties of T92/TP316H
dissimilar weldments. Journal of Materials Research,
31(10), 1532–1543.
43. Cao, J., Gong, Y., Yang, Z.G. (2011) Microstructural analysis
on creep properties of dissimilar materials joints between
T92 martensitic and HR3C austenitic steels. Materials Science
and Engineering A, 528, 6103–6111.
44. Fei, Z., Pan, Z., Cuiuri, D. et al. (2020) Effect of post-weld
heat treatment on microstructure and mechanical properties
of deep penetration autogenous TIG-welded dissimilar joint
between creep strength enhanced ferritic steel and austenitic
stainless steel. The International Journal of Advanced Manufacturing
Technology, 108, 3207–3229.
45. Vidyarthy, R.S., Kulkarni, A., Dwivedi, D.K. (2017) Study
of microstructure and mechanical property relationships of
A-TIG welded P91–316L dissimilar steel joint. Material Science
and Engineering A, 695, 249–257.
46. Sharma, P., Kumar Dwivedi, D. (2019) A-TIG welding of dissimilar
P92 steel and 304H austenitic stainless steel: Mechanisms,
microstructure and mechanical properties. Journal of
Manufacturing Processes, 44, 166–178.
47. Thakare, J.G., Pandey, C., Gupta, A. et al. (2021) Role of
the heterogeneity in microstructure on the mechanical performance
of the Autogenous Gas Tungsten Arc (GTA) welded
dissimilar joint of F/M P91 and SS304L steel. Fusion Engineering
and Design, 168, 112616, 1–13.
Реклама в цьому номері: