Он-лайн трансляція конференції «Сучасні напрями розвитку адитивних технологій» 27 листопада 2023 р., на youtube каналі ІЕЗ: https://www.youtube.com/@pewiphd791
Початок трансляції 10:00 за київським часом

2009 №02 (02) 2009 №02 (04)

TPWJ, 2009, #2, 11-15 pages


Journal                    The Paton Welding Journal
Publisher                 International Association «Welding»
ISSN                       0957-798X (print)
Issue                       № 2, 2009 (February)
Pages                      11-15
1RPC «Tekhnotron», Cheboksary, Russia
2Tula State University, Tula, Russia
3REC «Welding and Control» at N.E. Bauman MSTU, Moscow, Russia
The physical-mathematical model of drop transfer phenomena in consumable electrode welding with short-circuiting of the arc gap is considered, which allows for conditions of electrode metal transfer and interaction of the arc with electric parameters of the power source. The software realizing the numerical solution of the model equations makes it possible to study the phenomena occurring in welding and justifiably determine not only the technological parameters of the process, but also the technological requirements to design of various types of consumable-electrode arc welding equipment.
Keywords: arc welding, consumable electrode, shielding gas, drop transfer phenomena, virtual process, power source, arc, arc gap, short-circuiting, physical-mathematical model, controlled drop transfer
Received:                01.12.08
Published:               28.02.09
1. Tavrovsky, V.P. (1969) Automatic pulsed arc welding of position butts of steam pipes. Energet. Stroitelstvo, 10, 28-32.
2. Paton, B.E., Shejko, P.P., Pashulya, M.P. (1971) Automatic control of metal transfer in pulsed arc welding. Avtomatich. Svarka, 9, 1-3.
3. Paton, B.E., Potapievsky, A.G. (1973) Types of shieldedgas welding processes with stationary and pulsed arc (Review). Ibid., 9, 1-8.
4. Stava, E.K. (1999) New surface transfer tension process speeds pipe welding. Pipe Line and Gas Industry, 82(9), 55-57.
5. Wang, F., Hou, W.K., Hu, S.J. et al. (2003) Modelling and analysis of metal transfer in gas metal arc welding. J. Phys. D: Appl. Physics, 36, 1-19.
6. Grabovetsky, G.V., Kharitonov, S.A., Preobrazhensky, E.B. et al. (2001) Some tendencies in development of apparatuses and devices of power electronics. Khimiya v Interesakh Ust. Razvitiya, 9(7), 921-928.
7. Lankin, Yu.N. (2007) Automatic control of the MAG welding process with periodic short-circuiting of arc gap (Review). The Paton Welding J., 1, 2-8.
8. Yamamoto, T., Ohji, T., Miyasaka, F. et al. (2002) Mathematical modeling of metal active gas arc welding. Sci. and Technol. of Welding & Joining, 7(4), 260-264.
9. Lebedev, V.K. (2004) Tendencies in development of power sources and control systems (based on materials of US patents). The Paton Welding J., 1, 37-45.
10. Getskin, O.B., Poloskov, S.I., Erofeev, V.A. et al. (2008) Physico-mathematical model of the «power supply-arc» system for consumable-electrode shielded-gas welding. Tyazh. Mashinostroenie, 6, 18-20.
11. Getskin, O.B., Poloskov, S.I., Erofeev, V.A. et al. (2008) Simulation of specifics of drop transfer control in short-circuiting arc welding. Tekhnologiya Mashinostroeniya, 10, 25-29.
12. Getskin, O.B. (2008) Development of automatic machine of modular configuration for orbital welding of the main pipelines. Svarka i Diagnostika, 6, 19-23.
13. Getskin, O.B., Poloskov, S.I., Erofeev, V.A. et al. (2008) Process stability of consumable-electrode welding with shortcircuiting of the arc gap. Tyazh. Mashinostroenie, 9, 20-23.