2009 №03 (01) 2009 №03 (03)

The Paton Welding Journal 2009 #03
TPWJ, 2009, #3, 8-11 pages


Journal                    The Paton Welding Journal
Publisher                 International Association «Welding»
ISSN                       0957-798X (print)
Issue                       № 3, 2009 (March)
Pages                      8-11

E.O. Paton Electric Welding Institute, NASU, Kiev, Ukraine
Crack resistance of welded samples of steels with martensite and martensite-bainite transformations under isothermal conditions at different heating temperatures was studied by using the «Implant» testing machine equipped with the automatic heating and temperature monitoring system. It is shown that the risk of cold cracking of welded joints on martensitic steels is run in cooling after welding, starting from temperatures of 140-120 °C. The welded joints on steel with the bainitic-martensitic structure become sensitive to cracking at a temperature below 80 °C.
Keywords: arc welding, heat-resistant steels, welded joints, cold cracks, delayed fracture, temperature effect, structure, martensite, bainite
Received:                03.12.08
Published:               28.03.09
1. Kasatkin, B.S., Musiyachenko, V.F. (1974) Mechanism of formation of intercrystalline cold cracks in near-weld zone of tempered steel welded joint. Problemy Prochnosti, 10, 3-9.
2. Kasatkin, B.S., Brednev, V.I. (1985) Peculiarities of the process of cold cracking in welded joints on low-alloy highstrength steels. Avtomatich. Svarka, 8, 1-5, 18.
3. Kasatkin, O.G. (1994) Peculiarities of hydrogen-induced embrittlement of high-strength steels in welding. Ibid., 1, 3-7.
4. Kasatkin, B.S., Smiyan, O.D., Mikhajlov, V.E. et al. (1986) Effect of hydrogen on sensitivity to cracking in HAZ with stress concentrators. Ibid., 11, 20-23.
5. Kasatkin, B.S., Strizhius, G.N., Brednev, V.I. et al. (1993) Hydrogen-induced brittleness and cold cracking in welding of steel 22Kh2NMFA. Ibid., 8, 3-10.
6. Kikuta, Y., Araki, T. (1980) Microscopic redistribution behaviours of hydrogen and fracture morphology of HAZ cold cracking in high strength steel. IIW Doc. II-927-80.
7. Brednev, V.I., Kasatkin, B.S. (1988) Specific work of cold cracking sites in welding of low-alloy high-strength steels. Avtomatich. Svarka, 11, 3-8, 11.
8. Pokhodnya, I.K., Yavdoshchin, I.R., Paltsevich, A.P. et al. (2004) Metallurgy of arc welding. Interaction of metal with gases. Kiev: Naukova Dumka.
9. Boniszewski, T., Watkinson, F., Baker, R.G. et al. (1965) Hydrogen embrittlement and heat-affected zone cracking in low-carbon alloy steels with acicular microstructures. British Welding J., 12(1), 20-42.
10. Kasatkin, B.S., Musiyachenko, V.F. (1970) Low-alloy higher-strength steels for welded structures. Kiev: Tekhnika.
11. Makara, A.M., Mosendz, N.A. (1971) Welding of highstrength steels. Kiev: Tekhnika.
12. Suzuki, H. (1978) Cold cracking and its prevention in steel welding. IIW Doc. IX-1074-78.
13. Terasaki, T., Hall, G.T., Parteger, R.I. (1991) Cooling time and prediction equation for estimating hydrogen diffusion in CTS test welds. Transact. of JWS, 22(1), 53-56.
14. Cottrell, A.H. (1944) A note on the initiation of hardened zone cracks. Welding J., 23(11), 584-586.
15. Pidgaetsky, V.V. (1970) Pores, inclusions and cracks in welds. Kiev: Tekhnika.
16. Granjon, H. (1969) The «Implant» method for studying the weldability of high strength steels. Metal Constr. and British Welding J., 1(11), 509-515.
17. Kasatkin, B.S., Brednev, V.I., Volkov, V.V. (1981) Procedure for determination of deformations in delayed fracture. Avtomatich. Svarka, 11, 1-7, 11.
18. Belous, M.V., Braun, M.P. (1986) Physics of metals. Kiev: Vyshcha Shkola.
19. Krauss, G., Marder, A.R. (1971) The morphology of martensite in iron alloys. Metallurgical Transact., 2(9), 2343-2357.
20. Kehoe, M., Kelly, P.M. (1970) The role of carbon in the strength of ferrous martensite. Scripta Metallurgica, 4(6), 473-476.