Print

2011 №07 (01) 2011 №07 (03)

The Paton Welding Journal 2011 #07
The Paton Welding Journal, 2011, #7, 7-10 pages  

FORCE EFFECT ON WELDED SURFACES INITIATED BY RUNNING OF SHS REACTION IN NANOLAYERED INTERLAYER

E.A. VELIKOIVANENKO, A.I. USTINOV, G.K. KHARCHENKO, Yu.V. FALCHENKO, L.V. PETRUSHINETS and G.F. ROZYNKA


E.O. Paton Electric Welding Institute, NASU, Kiev, Ukraine
 
 
Abstract
The case of welding samples of titanium aluminide through nanostructured Ti/Al interlayer was used to calculate stresses arising in the surface layers of welded intermetallide samples, initiated by intensive heat evolution at running of the reaction of self-propagating high-temperature synthesis in the interlayer.
 
 
Keywords: welding, nanolayered interlayer, reaction of self-propagating high-temperature synthesis, thermal stresses
 
 
Received:                ??.??.??
Published:               28.07.11
 
 
References
1. Ustinov, A.I., Falchenko, Yu.V., Ishchenko, A.Ya. et al. (2009) Producing permanent joints of .-TiAl based alloys using nanolayered Ti/Al interlayer by vacuum diffusion welding. The Paton Welding J., 1, 12-15.
2. Kharchenko, G.K., Mazanko, V.F., Ustinov, A.I. et al. (2009) Study of diffusion processes in welded joints of titanium aluminide (TiAl). Visnyk ChDTU. Series Technical Sciences, 37, 117-119.
3. Elkina, N.A., Nosyrev, A.N., Khvesyuk, V.I. (2006) Investigation of processes for producing of foils of TiAl intermetallides from multilayer binary systems by method of self-propagating high-temperature synthesis. In: Proc. of 33rd Int. Conf. on Plasma Physics and Controlled Thermonuclear Synthesis (Zvenigorod, 13-17 Febr. 2006). www.fpl./ Zvenigorod/XXXIIIPt/ru/BL-Khvesyuk.doc.
4. Rogachev, A.S., Grigoryan, A.E., Illarionova, E.V. et al. (2004) Gas-free burning of multilayer bimetallic nanofilms of Ti/Al. Fizika Goreniya i Vzryva, 40(2), 45-51.
5. Meshkov, Yu.Ya., Gertsriken, D.S., Mazanko, V.F. (1996) On problem of mechanism of accelerated mass transfer in metals under conditions of pulsed loads. Metallofizika, 18(4), 52-53.
6. Gertsriken, D.S., Mazanko, V.F., Tyshkevich, V.M. et al. (1999) Mass transfer in metals at low temperatures in conditions of external action. Kiev: IMF NANU.
7. Makhnenko, V.I. (1976) Computational methods for study of kinetics of welding stresses and strains. Kiev: Naukova Dumka.
8. Makhnenko, V.I., Velikoivanenko, E.A., Pochinok, V.E. et al. (2001) Numerical methods of the predictions of welding stresses and distortions. In: Welding and Surfacing Rev., Vol. 13, Pt 1. Ed. by B.E. Paton. Harwood Acad. Publ.
9. (1967) Physical properties of steels and alloys used in power engineering: Refer. Book. Ed. by B.E. Neumark. Moscow; Leningrad: Energiya.
10. Polkin, I.S., Kolachev, B.A., Iliin, A.A. (1997) Titanium aluminides and alloys on their base. Tekhnologiya Lyog. Splavov, 3, 32-39.
11. Gorban, V.F., Kharchenko, G.K., Falchenko, Yu.V. et al. (2009) Investigation of joints of titanium aluminide with titanium alloy VT8 produced by diffusion welding. The Paton Welding J., 12, 7-9.
12. Bartolotta, P., Barrett, J., Kelly, T. et al. (1997) The use of cast Ti-48Al-2Cr-2Nb in jet engines. J. Minerals, Metals and Materials Soc., 49(5), 48-50.