Print

2011 №07 (04) 2011 №07 (06)

The Paton Welding Journal 2011 #07
The Paton Welding Journal, 2011, #7, 20-25 pages  

PECULIARITIES OF FORMATION OF STRUCTURE IN THE TRANSITION ZONE OF THE Cu-Ta JOINT MADE BY EXPLOSION WELDING

B.A. GRINBERG1, O.A. ELKINA1, O.V. ANTONOVA1, A.V. INOZEMTSEV1, M.A. IVANOV2, V.V. RYBIN3 and V.E. KOZHEVNIKOV4


1Institute of Metal Physics, RAS Ural Division, Ekaterinburg, Russia
2G.V. Kurdyumov Institute for Metal Physics, NASU, Kiev, Ukraine
3A.M. Prokhorov Academy of Engineering Sciences, St-Petersburg, Russia
4OJSC «Ural Chemical Engineering Factory», Ekaterinburg, Russia
 
 
Abstract
Structure of the transition zone in a joint of metals having no mutual solubility was studied. It was determined that surface of the explosion welded Cu-Ta joint is not smooth, but contains protrusions with a size of about 5-10 mm. The transition zone of the joint consists of chaotically distributed non-melted regions of copper and tantalum, as well as zones of local melting of copper containing tantalum nanoparticles 30-50 nm in size. Two processes, i.e. formation of protrusions at the interface and local melting zones, determine stirring of the materials having no mutual solubility.
 
 
Keywords: explosion welding, limited solubility, formation of joint, transition zone, local melting, nanoparticles
 
 
Received:                ??.??.??
Published:               28.07.11
 
 
References
1. Greenberg, B.A., Rybin, V.V., Antonova, O.V. (2005) Microstructure of bimetallic joint of titanium and orthorhombic titanium aluminide (explosion welding). In: Severe plastic deformation: toward bulk production of nanostructured materials. New York: Nova, 533-544.
2. Rybin, V.V., Semenov, V.A., Sidorov, I.I. et. al. (2009) Bimetallic joint of orthorhombic titanium aluminide and titanium alloy (diffusion welding, explosion welding). Voprosy Materialovedeniya, 59(3), 17-31.
3. Rybin, V.V., Grinberg, B.A., Antonova, O.V. et al. (2009) Formation of vortices in explosion welding (titanium-orthorhombic titanium aluminide). Fizika Metallov i Metallovedenie, 108(4), 371-384.
4. Grinberg, B.A., Rybin, V.V., Ivanov, M.A. et al. (2009) Nanostructure of vortex during explosive welding. In: Proc. of 4th NANOSMAT Conf. (Rome, 2009), 220.
5. Rybin, V.V., Grinberg, B.A., Ivanov, M.A. et al. (2010) Structure of transition zone in explosion welding (titanium-orthorhombic titanium aluminide). Svarka i Diagnostika, 3, 26-31.
6. Grinberg, B.A., Ivanov, M.A., Rybin, V.V. et al. (2010) Processes of melting, vortex formation and fragmentation in explosion welding. Ibid., 6, 34-38.
7. Rybin, V.V., Grinberg, B.A., Ivanov, M.A. et al. (2010) Structure of joining zone between titanium and orthorhombic titanium aluminide. Pt 1: Interfaces of different types. Deformatsiya i Razrush. Materialov, 11, 27-33.
8. Grinberg, B.A., Ivanov, M.A., Rybin, V.V. et al. (2010) Structure of joining zone between titanium and orthorhombic titanium aluminide. Pt 2: Zones of local melting. Ibid., 12, 27-35.
9. Rybin, V.V., Greenberg, B.A., Ivanov, M.A. et al. (2011) Nanostructure of vortex during explosion welding. J. Nanoscience and Nanotechnology, 11 (to be publ.).
10. Pervukhina, O.L., Pervukhin, L.B., Berdychenko, A.A. et al. (2009) Features of explosion welding of titanium to steel in a shielding atmosphere. The Paton Welding J., 11, 18-22.
11. Lysak, V.I., Kuzmin, S.V. (2005) Explosion welding. Moscow: Mashinostroenie-1.
12. Vladimirov, V.I., Romanov, A.E. (1986) Disclinations in crystals. Leningrad: Nauka.
13. Deribas, A.A. (1980) Physics of strengthening and explosion welding. Novosibirsk: Nauka.
14. Summ, B.D. (2009) Principles of colloid chemistry. Moscow: Akademiya.