2013 №02 (08) 2013 №02 (10)

The Paton Welding Journal 2013 #02
The Paton Welding Journal, 2013, #2, 48-52 pages  



Lappeenranta University of Technology, Lappeenranta, Finland
The objective of the research is to investigate an increase in efficiency of the high power laser welding process by the effect of two factors: joint edge surface roughness, and air gap between the plates. Welding of St3 low alloyed steel 20 mm thick was performed with high power fiber laser with a wavelength of 1070nm at a power of 14 kW. Optimum roughness levels and recommended air gap between the plates to ensure maximum penetration depth and highest quality of weld are presented. 26 Ref., 5 Figures
Keywords: laser welding, low alloyed steel, fiber laser, high power, absorptance, penetration depth, gap, roughness of edge surface
Received:                07.12.12
Published:               28.02.13
1. Duley, W.W. (1998) Laser welding. NY: John Wiley & Sons.
2. Ion, J.C. (2005) Laser processing of engineering materials. Oxford: Butterworth-Heinemann.
3. Xiangzhong, J. (2008) A three-dimensional model of multiple reflections for high-speed deep penetration laser welding based on an actual keyhole. Optics and Lasers in Eng., 46(1), 83-93.
4. (2008) Metallurgy and mechanics of welding: Processes and industrial applications. Ed. by R. Blondeau. Saint-Etienne: ENSM.
5. Le Guen, E., Fabbro, R., Carin, M. et al. (2011) Analysis of hybrid Nd:YAG laser-MAG arc welding processes. Optics & Laser Technology, 43(7), 1155-1166.
6. Kah, P., Salminen, A., Martikainen, J. (2010) Laser-arc hybrid welding processes (Review). The Paton Welding J., 6, 32-40.
7. Bayraktar, E., Moiron, J., Kaplan, D. (2006) Effect of welding conditions on the formability characteristics of thin sheet steels: Mechanical and metallurgical effects. J. Materials Proc. Techn., 286(3), 20-26.
8. Arata, Y., Miyamoto, I. (1972) Some fundamental properties of high power laser beam as a heat source: Report 2. Transact. of JWS, 3, 163-180.
9. Covelli, L., Jovane, F., De lorio, L. et al. (1988) Laser welding of stainless steel: Influence of the edges morphology. CIRP Annals-Manufac. Technology, 37, 545-548.
10. Ricciardi, G., Cantello, M. (1994) Laser material interaction: Absorption coefficient in welding and surface treatment. Ibid., 43(1), 171-175.
11. Grigoryants, A.G., Shiganov, I.N., Misyurov, A.I. (2006) Technological processes of laser treatment. Moscow: Bauman MSTU.
12. Steen, W.M. (2003) Laser material processing. 3rd ed. London: Springer.
13. Kinoshita, K., Mizutani, M., Kawahito, Y. et al. (2006) Phenomena of welding with high-power fiber laser. In: 25th ICALEO Proc., 535-542.
14. Katayama, S., Kawahito, Y., Kinoshita, K. et al. (2007) Weld penetration and phenomena in 10 kW fiber laser welding. In: 26th ICALEO Proc., 360-369.
15. Salminen, A., Lehtinen, J., Harkko, P. (2008) The effect of laser and welding parameters on keyhole and melt pool behavior during fiber laser welding. In: 27th ICALEO Proc., 416-425.
16. Salminen, A., Piili, H., Purtonen, T. (2010) The characteristics of high power fibre laser welding. J. Mechanical Eng. Sci., 224(5), 1019-1029.
17. Salminen, A., Purtonen, T. (2009) The effect of welding parameters on keyhole and melt pool dimensions and behavior during fiber laser welding. In: Proc. of 12th Nordic Conf. on Laser Materials Processing.
18. Kaplan, A., Wiklund, G. (2009) Advanced welding analysis methods applied to heavy section welding with a 15 kW fiber laser, In: Proc. of IIW Int. Welding Conf., 53, 295-300.
19. Katayama, S., Kawahito, Y., Mizutani, M. (2010) Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects. Physics Proc., 5, 9-17.
20. Sokolov, M., Salminen, A., Kuznetsov, M. et al. (2011) Laser welding and weld analysis of thick section S355 structural steel. Materials & Design, 32(10), 5127-5131.
21. Bergstrm, D., Powell, J., Kaplan, A. (2007) The absorption of light by rough metal surfaces Е A three-dimensional ray-tracing analysis. In: 26th ICALEO Proc., 704-713.
22. Malashenko, A.A., Mezenov, A.V. (1984) Laser welding of metal. Moscow: Mashinostroenie.
23. Sokolov, M., Salminen, A., Somonov, V. et al. (2012) Laser welding of structural steels: Influence of the edge roughness level. Optics & Laser Technology, 44(7), 2064-2071.
24. GOST 380-94: Common quality carbon steel. Grades.
25. EN 10049:2005: Measurement of roughness average Ra and peak count RPc on metallic flat products.
26. ISO 13919-1:1996: Welding. Electrons and laser beam welded joints. Guidance on quality levels for imperfections. Pt 1: Steel.