Eng
Ukr
Rus
Print
2015 №08 (03) DOI of Article
10.15407/tpwj2015.08.04
2015 №08 (05)

The Paton Welding Journal 2015 #08
TPWJ, 2015, #8, 18-25 pages
 
State-of-the-art of hybrid laser-plasma welding (Review)
 
Journal                    The Paton Welding Journal
Publisher                 International Association «Welding»
ISSN                       0957-798X (print)
Issue                       № 8, 2015 (August)
Pages                      18-25
 
 
Authors
A.I. Bushma
E.O. Paton Electric Welding Institute, NASU. 11 Bozhenko Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua
 
 
Abstract
The paper presents brief retrospective of progress and state-of-the-art of hybrid laser-plasma welding. It is shown that the main objectives of HLPW include not only plasma-arc heating of item metal to increase its absorptivity, but also modification of welding thermal cycle to lower the rate of cooling after welding. This allows lowering the content of brittle structures prone to fracture in service. Moreover, presence of plasma-arc component of the process allows lowering the requirements to quality of fit-up of the butts to be welded, compared to laser welding. Prospects for introduction of HLPW into industry are related to its cost and technological advantages. Cost advantages consist in partial (up to 50 %) replacement of quite expensive laser power by much less expensive arc power, as well as reduction of process power input due to the possibility of filler wire replacement by the respective powder or complete elimination of filler material. Technological advantages consist in reduction of residual thermal deformations, lowering of requirements to preparation of edges to be welded (including the possibility of welding edges with a variable gap), obtaining the ability of cathode cleaning of aluminium alloys directly during welding, increase of penetration depth and process efficiency (several times compared to plasma welding and by approximately 40 % compared to laser welding). Introduction of laser-plasma welding can change the current ideas of technologists about the welding process and those of designers about welded structure design. Industrial application of laser-plasma technology is, primarily, associated with solving the problems of joining titanium and aluminium alloys, as well as stainless steels in the range of thicknesses of 0.3-15 mm. 50Ref., 12Figures.
 
Keywords: hybrid technologies, synergic effect, laser-plasma welding, process schematic, laser radiation, wave length, plasma, cathode cleaning, mode parameters, application prospects
 
Received:                23.03.15
Published:               13.10.15
 
 
References
  1. Krivtsun, I.V. (2002) Combined laser-arc processes of treatment of materials and devices for their realization: Syn. of Thesis for Dr. of Techn. Sci. Degree. Kiev: PWI.
  2. Steen, W.M., Eboo, M. (1979) Arc augmented laser welding. Metal Construction, 11(7), 332-335.
  3. Steen, W.M. (1980) Arc augmented laser processing of materials. J. Appl. Physics, 51(11), 5336-5641. https://doi.org/10.1063/1.327560
  4. Steen, W.M. Methods and apparatus for cutting, welding, drilling and surface treating. Pat. 1547172 Great Britain. Int. Cl. B23 K 26/00, 9/00. Publ. 06.06.79.
  5. Bagger, C., Olsen, F.O. (2005) Review of laser hybrid welding. J. Laser Appl., 17(1), 2-14. https://doi.org/10.2351/1.1848532
  6. Petring, D., Fuhrmann, C., Wolf, N. et al. (2007) Progress in laser-MAG hybrid welding of high strength steels of up to 30 mm thickness. In: Proc. of ICALEO (Orlando, Fl, USA, 2007), 300-307.
  7. Shibata, K., Sakamoto, H., Iwasa, T. (2006) Laser-MIG hybrid welding of aluminium alloys. Welding in the World, 50(1/2), 27-34. https://doi.org/10.1007/bf03266512
  8. Laser technology of Trumpf company. http:// www.trumpf-laser.com
  9. Products of STA IRE-Polus. http://www.ntoire-polus.ru
  10. Dykhno, I.S., Krivtsun, I.V., Ignatchenko, G.N. Combined laser and plasma arc welding torch. Pat. 5700989 USA. Int. Cl. B23K 26/00, 10/00. Publ. 23.12.97.
  11. Dykhno, I., Ignatchenko, G., Bogachenkov, E. Combined laser and plasma-arc processing torch and method. Pat. 6388227 B1 USA. Publ. 14.05.2002.
  12. Krivtsun, I.V., Shelyagin, V.D., Khaskin, V.Yu. et al. (2007) Hybrid laser-plasma welding of aluminium alloys. The Paton Welding J., 5, 36-40.
  13. Walduck, R.P. Enhanced laser beam welding. Pat. 5866870 USA. Int. Cl. B23 K 10/00, 26/00. Publ. 02.02.99.
  14. Kim, C.H., Ahn, Y.H., Kim, J.H. (2011) CO2 laser-microplasma arc hybrid welding for galvanized steel sheets. Transact. of Nonferrous Metals Society of China, Vol. 21, Suppl. 1, 47-53. https://doi.org/10.1016/S1003-6326(11)61059-5
  15. Krivtsun, I.V., Bushma, A.I., Khaskin, V.Yu. (2013) Hybrid laser-plasma welding of stainless steels. The Paton Welding J., 3, 46-50.
  16. Petring, D. Laser material machining using hybrid processes. Pat. WO2003089185 A1 USA. Publ. 30.10.2003.
  17. Stelling, K., Lammers, M., Schobbert, H. et al. (2006) Qualification of Nd:YAG and CO2 laser plasma hybrid welding with filler material powder. Welding and Cutting, 5(6), 330-334.
  18. Paton, B.E., Gvozdetsky, V.S., Dudko, D.A. et al. (1979) Microplasma welding. Kiev: Naukova Dumka.
  19. Kexuan, Ch., Heqi, L., Chunxu, L. (2003) Cathodic cleaning in variable polarity plasma arc welding of aluminum alloys. China Welding, 2, 168-170.
  20. Bingkun, Z. (2000) Study of processing parameters of CO2-laser welding on aluminum alloys. Chinese J. Lasers, 2, 183-186.
  21. Junfeng, Q., Dongyun, Z., Rongshi, X. et al. (2007) Joint performance of CO2 laser beam welding 5083-h321 aluminum alloy. China Welding, 2, 40-45.
  22. Shu-rong, Y., Ding, F., Jin-hui, X. et al. (2006) CO2-laser welding of 5a06 aluminum alloy plates with different thicknesses. Transact. of Nonferrous Metals Society of China, 3, 1407-1410.
  23. Khaskin, V.Yu. (2013) Development of laser welding of aluminium alloys at the E.O. Paton Electric Welding Institute (Review). The Paton Welding J., 5, 51-55.
  24. Bagger, C., Olsen, F.O. (2003) Comparison of plasma, metal inactive gas (MIG), tungsten inactive gas (TIG) processes for laser hybrid welding. In: Proc. of 22nd ICALEO (Jacksonville, Fl, USA, 13-16 Oct. 2003), 11-20.
  25. Shikai, W., Rongshi, X., Wuxiong, Y. et al. (2010) Characteristics comparison of laser-TIG arc interaction using high power CO2 and Yb:YAG laser. Chinese J. Lasers, 10, 2667-2671. https://doi.org/10.3788/CJL20103710.2667
  26. Shikai, W., Rongshi, X., Kai, C. (2009) CO2-laser welding and CO2-laser-TIG hybrid welding of thin walled stainless steel butt joint from the base plate side. Electromachining & Mould, 6, 29-33.
  27. Katayama, S., Mizutani, M., Tarui, T. et al. (2004) Monitoring and phenomena observation during YAG-laser lap welding of Zn-coated steel sheets. J. Lanzhou University of Technology, 4, 31-36.
  28. Liming, L., Gang, S., Jifeng, W. et al. (2004) Microstructure and mechanical properties of wrought magnesium alloy AZ31B welded by laser-TIG hybrid. Transact. of Nonferrous Metals Society of China, 14(3), 550-555.
  29. Zhang, X., Chen, W., Wang, C. et al. (2004) Microstructures and toughness of weld metal of ultrafine grained ferritic steel by laser welding. J. Materials Sci. & Techn., 6, 755-759.
  30. Wenquan, W., Daqian, S., Chungyan, K. (2008) Macrostructural and microstructural features of 1000 MPa grade TRIP steel joint by CO2-laser welding. China Welding, 2, 1-7.
  31. Xiaodong, H., Jianxun, Z., Zuo, P. et al. (2003) Test of residual stress in laser beam welding and TIG welding joints of aeronautical titanium alloy plate. Welding & Joining, 10, 26-29.
  32. Yuan, X., Yonglun, S., Kunping, H. (2008) New development of mechanisms of laser-TIG arc hybrid welding. Ibid., 12, 21.
  33. Chen, Y., Lei, Z., Li, L. et al. (2006) Influence of shielding gas pressure on welding characteristics in CO2-laser-MIG hybrid welding process. Chinese Optics of Letters, 1, 33-35.
  34. Li, C., Xiaoyan, L., Dingyong, H. et al. (2009) Laser-arc hybrid welding of titanium alloy. Welding & Joining, 7, 60-64.
  35. Zhen, L., Guoliang, Q., Shangyang, L. (2005) Development of YAG laser-MIG/MAG arc hybrid welding technology. Ibid., 9, 9-12.
  36. Fuzuo, W., Jianping, H., Feng, X. (2010) Study on stainless steel screen mesh welding using microplasma arc welding. Hot Working Techn., 1, 128-130, 133.
  37. Xiaohui, L., Su, W., Caiyun, X. (2008) 304 stainless steel rotary twin-focus laser-TIG hybrid welding. J. Beijing University of Aeronautics and Astronautics, 4, 431-434.
  38. Gao, Zh., Huang, J., Li, Y. (2008) Effect of relative position of laser beam and arc on formation of weld in laser-MIG hybrid welding. Transact. of China Welding Inst., 12, 69-73.
  39. Ishide, T., Tsubota, S., Watanabe, M. (2002) Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products. In: Proc. of 1st Int. Symp. on High-Power Laser Macro (Osaka, 2002), 347-352.
  40. Roepke, C., Liu, S., Kelly, S. et al. (2010) Process monitoring and macrostructure examination of low laser power hybrid gas metal arc welding on A36 steel: IIW Doc. IV-1030-10.
  41. Liu, Z., Kutsuna, M. (2005) Metallurgical study on laser-MAG hybrid welding of HSLA-590 steel. In: Proc. of Laser Materials Processing Conf. (Miami, Fl, USA, 2005), 127-133.
  42. Naito, Y., Mizutani, M., Katayama, S. (2003) Observation of keyhole behavior and melt flows during laser-arc hybrid welding. In: Proc. of ICALEO (Jacksonville, USA, 2003), Sect. A, 159-167.
  43. Yuan, Y., Wouters, M., Powell, J. et al. (2008) Optimization research on laser-MIG composite welding for rear axle steel plate. Automobile Techn., 1, 54-57.
  44. Krivtsun, I.V., Chizenko, M.I. (1997) Principles of calculation of laser-arc plasmatrons. Avtomatich. Svarka, 1, 16-23.
  45. Kah, P., Salminen, A., Martikainen, J. (2010) Laser-arc hybrid welding processes (Review). The Paton Welding J., 6, 32-40.
  46. Krivtsun, I.V., Bushma, A.I., Khaskin, V.Yu. (2013) Laser-plasma welding of stainless steels and aluminium alloys. Dopovidi NANU, 3, 76-82.
  47. Sidorets, V.N., Bushma, A.I., Khaskin, V.Yu. (2012) Prospects of application of hybrid laser-plasma welding of stainless steels in machine-building. Visnyk DDMBA, 28(3), 244-246.
  48. Shelyagin, V.D., Orishich, A.M., Khaskin, V.Yu. et al. (2014) Technological peculiarities of laser microplasma and hybrid laser-microplasma welding of aluminium alloys. The Paton Welding J., 5, 33-39. https://doi.org/10.15407/tpwj2014.05.06
  49. Walduck, R.P., Biffin, J. (1994) Plasma arc augmented laser welding. Welding and Metal Fabr., 4, 172-176.
  50. Paul, K., Ridel, F. (2009) Hybrid laser welding - joining the efforts. Fotonika, 1, 2-5.

>