Позорная война рф против Украины

Начата 20 февраля 2014 и полномасштабно продолжена 24 февраля 2022 года. С первых же минут рф ведет ее с нарушением законов и правил войны, захватывает атомные станции, уничтожает бомбардировками мирное население и объекты критической инфраструктуры. Правители и армия рф - военные преступники. Все, кто платит им налоги или оказывают какую-либо поддержку - пособники терроризма. Народ Украины вас никогда не простит и ничего не забудет.

2016 №01 (01) DOI of Article
2016 №01 (03)

The Paton Welding Journal 2016 #01
TPWJ, 2016, #1, 12-16 pages
Modelling of chemical composition of weld pool metal in arc methods of welding

Journal                    The Paton Welding Journal
Publisher                 International Association «Welding»
ISSN                      0957-798X (print)
Issue                       № 1, 2016 (January)
Pages                      12-16
V.V. Golovko And L.A. Taraborkin
E.O. Paton Electric Welding Institute, NASU 11 Kazimir Malevich Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua
Development of complex calculation algorithm based on system approach for numerical prediction of formation and growth of non-metallic inclusions in a weld metal is one of the important tasks in present time. One of significant blocks of it is a calculation estimation of weld metal chemical composition in arc methods of welding, which is of interest and being studied in present work. A procedure was proposed for calculation of content of weld pool melt in arc welding. The developed procedure is based on modelling of thermodynamics of interface interaction in metal–slag–gas-vapor phase system in a temperature range typical for weld pool existence in arc methods of welding. Predicted content of metal melt can be a basis for modelling of content, size, morphology and chemical composition of non-metallic inclusions in weld metal. 11 Ref., 3 Tables, 3 Figures.
Keywords: arc welding, weld pool, melt, thermodynamics, inclusions, slag, chemical composition, modelling, prediction
Received:                27.10.15
Published:               15.03.16
  1. Weng, Y. (2003) Microstructure refinement of structural steel in China. ISIJ Int., 43(11), 1675–1682. https://doi.org/10.2355/isijinternational.43.1675
  2. Borovikov, A.V. (2003) Production of straight-seam large-diameter pipes made of steel of strength class X80. Metallurgist, Vol. 47, 9–10. https://doi.org/10.1023/B:MELL.0000015274.80337.3b
  3. Kim, Y.M., Kim, S.K., Lim, Y.J. et al. (2002) Effect of microstructure on the yield ratio and low temperature toughness of line pipe steels. ISIJ Int., 42(12), 1571–1577. https://doi.org/10.2355/isijinternational.42.1571
  4. Shukla, R., Das, S.K., Kumar, B.R. et al. (2012) Ultra-low carbon, thermomechanically controlled processed microalloyed steel: microstructure and mechanical properties. and Mater. Transact. A, 43(12), 4835–4845. https://doi.org/10.1007/s11661-012-1273-7
  5. Park, J.S., Lee, C., Park, J.H. (2012) Effect of complex inclusion particles on the solidification structure of Fe–Ni–Mn–Mo alloy. Ibid., B, 43(12), 1550–1557. https://doi.org/10.1007/s11663-012-9734-3
  6. Sarma, D.C., Karasev, A.V., Jonson, P.G. (2009) On the role of nonmetallic inclusions in the nucleation of acicular ferrite in steels. ISIJ Int., 49(7), 1063–1074. https://doi.org/10.2355/isijinternational.49.1063
  7. Babu, S.S. (2009) Thermodynamic and kinetic models for describing microstructure evolution during joining of metals and alloys. Materials Rev., 6, 333–367. https://doi.org/10.1179/095066009X12506720908654
  8. Zinngrebe, E., Van Hoek, C., Visser, H. et al. (2012) Inclusion population evolution in Ti-alloyed Al-killed steel during secondary steelmaking process. ISIJ Int., 52(1), 52–61. https://doi.org/10.2355/isijinternational.52.52
  9. Jung In-Ho, Decretov, S.A., Pelton, A.D. (2004) Computer application of thermodynamic databases to inclusion engineering. Ibid., 44(3), 527–536.
  10. Grigoryan, V.A., Stomakhin, A.Ya., Ponomarenko, A.G. (1989) Physical-chemical calculations of electric steelmaking processes. Moscow: Metallurgiya.
  11. CHEMICAL WORKBENCH v 3.5: Description of reactor models. (2007) Moscow: Kinetic Technologies.