Позорная война рф против Украины

Начата 20 февраля 2014 и полномасштабно продолжена 24 февраля 2022 года. С первых же минут рф ведет ее с нарушением законов и правил войны, захватывает атомные станции, уничтожает бомбардировками мирное население и объекты критической инфраструктуры. Правители и армия рф - военные преступники. Все, кто платит им налоги или оказывают какую-либо поддержку - пособники терроризма. Народ Украины вас никогда не простит и ничего не забудет.

2021 №08 (09) DOI of Article
2021 №08 (02)

The Paton Welding Journal 2021 #08
TPWJ, 2021, #8, 2-7 pages

Fatigue life of specimens from 40Kh steel after wear-resistant surfacing with a low-alloy steel sublayer

V.V. Knysh, S.O. Solovej, I.O. Ryabtsev and A.A. Babinets
E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

Studied was the resistance of a multilayer material to fatigue fracture, in which wear-resistant layer was deposited with the PP-Np-25Kh5FMS flux-cored wire with a sublayer from a low-alloy material, deposited with the PP-Np-12KhlMF wire. The design of surfaced specimens and their test procedure simulated the operating conditions of steel mill rolls. The integrated procedure of evaluation of fatigue fracture resistance of multilayer surfaced specimens to included three stages: determination of cyclic fatigue life of specimens after fabrication surfacing; studying the cyclic crack resistance of different deposited layers; determination of fatigue life of specimens, having fatigue cracks in the deposited layer during previous testing, after their repair surfacing. It was found that the cyclic fatigue life of specimens from 40Kh carbon steel, deposited with the PP-Np-25Kh5FMS flux-cored wire with a sublayer of 12KhlMF low-alloy steel is in the range of 346–716 thou cycles at maximum stress level of 500 MPa. Features of fatigue fracture kinetics of the studied multilayer material were determined. It was established that the fatigue crack propagates in the deposited metal in an unstable manner (in the wear-resistant layer and in a low-alloy steel sublayer), constantly changing its rate and direction. It is shown that cutting out fatigue cracks and subsequent surfacing of their removal areas allows restoring the cyclic fatigue life of the specimen to the initial level, i.e. twice increasing the overall life. 16 Ref., 4 Tables, 7 Figures.
Keywords: arc surfacing, repair surfacing, sublayer, fatigue life, fatigue cracks, stress intensity factor

Received 09.06.2021


1. Du Toit, M., Van Niekerk, J. (2010) Improving the Life of Continuous Casting Rolls Through Submerged Arc Cladding with Nitrogen-Alloyed Martensitic Stainless Steel. Welding in the World, 54(11-12), 342-349. https://doi.org/10.1007/BF03266748
2. Jhavar, S., Paul, C.P., Jain, N.K. (2013) Causes of failure and repairing options for dies and molds: A review. Engineering Failure Analysis, 34, 519-535. https://doi.org/10.1016/j.engfailanal.2013.09.006
3. Ahn, D.-G. (2013) Hardfacing technologies for improvement of wear characteristics of hot working tools: A Review. International Journal of Precision Engineering and Manufacturing, 14(7), 1271-1283. https://doi.org/10.1007/s12541-013-0174-z
4. Zhang, J., Zhou, J., Tao, Y. et al. (2015) The microstructure and properties change of dies manufactured by bimetal-gradient- layer surfacing technology. The International Journal of Advanced Manufacturing Technology, 80, 1807-1814 (2015). https://doi.org/10.1007/s00170-015-7170-7
5. Gao, F., Zhou, J., Zhou, J. et al. (2017) Microstructure and properties of surfacing layers of dies manufactured by bimetal- gradient-layer surfacing technology before and after service. The International Journal of Advanced Manufacturing Technology, 88, 1289-1297. https://doi.org/10.1007/s00170-016-8679-0
6. Vundru, C., Paul, S., Singh, R., Yan, W. (2018) Numerical analysis of multi-layered laser cladding for die repair applications to determine residual stresses and hardness. Procedia Manufacturing, 26, 952-961. https://doi.org/10.1016/j.promfg.2018.07.122
7. Ryabtsev, I.A., Senchenkov, I.K. (2013) Theory and practice of surfacing works. Kiev, Ekotekhnologiya [in Russian].
8. Rjabcev, I.A., Senchenkov, I.K., Turyk, Je.V. (2015) Naplavka. Materialy, tehnologii, matematicheskoe modelirovanie [Surfacing. Materials, technologies, mathematical modeling]. Gliwice, Wydawnictwo politechniki slaskiej [in Russian].
9. Babinets, A.A., Ryabtsev, І.A. (2016) Fatigue life of multilayer hard-faced specimens. Welding International, 30, 4, 305-309. https://doi.org/10.1080/01431161.2015.1058004
10. Ryabtsev, I.O., Knysh, V.V., Babinets, A.A. et al. (2020) Fatigue life of specimens after wear-resistant, manufacturing and repair surfacing. The Paton Welding J., 9, 19-25. https://doi.org/10.37434/tpwj2020.09.03
11. Ryabtsev, І.О., Knysh, V.V., Babinets, A.A., Solovej, S.O. (2021) Fatigue life of steel 40Kh specimens after wear-resistant surfacing with a sublayer of low-carbon steel. Ibid, 3, 2-8. https://doi.org/10.37434/tpwj2021.03.01
12. Oberg, E. et al. (1996) Machinery`s Handbook (25th ed.), Industrial Press Inc.
13. Murakami, Yu. (1990) Reference book on stress intensity efficients. In: 2 Vol. Moscow, Mir [in Russian].
14. (2004) Mechanical stress control device and deformations in solid media. Pat. UА 71637 С2.
15. Kaierle, S., Overmeyer, L., Alfred, I. et al. (2017) Single-crystal turbine blade tip repair by laser cladding and remelting. CIRP Journal of Manufacturing Science and Technology, 19, 196-199. https://doi.org/10.1016/j.cirpj.2017.04.001
16. Kim, D.-Y., Kim, D., Kang, M., Kim, Y.-M. (2017) Improvement of fatigue strength of lap fillet joints by using tandem MAG welding in a 590-MPa-grade galvannealed steel sheet. The International Journal of Advanced Manufacturing Technology, 93(9-12), 4379-4387. https://doi.org/10.1007/s00170-017-0828-6

Advertising in this issue: