The Paton Welding Journal, 2023, #12, 39-49 pages
Investigations of the quality of metal of high-manganese steel alloyed by aluminium and chromium after electroslag remelting
V.A. Zaitsev, Yu.V. Kostetskyi, G.O. Polishko, V.A. Kostin, V.P. Petrenko, E.O. Pedchenko
E.O. Paton Electric Welding Institute of the NASU.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: belousvy@gmail.com
Abstract
The paper presents the results of investigation of the influence of electroslag remelting on the properties of metal of
ingots of high-manganese steel, alloyed by aluminium and chromium. Features of structure formation in high-alloy
manganese steels are considered. These steels demonstrate ductility and lower density, alongside strength, and are
difficult to cast alloys, prone to hot cracking, formation of a coarse structure and development of macro- and microliquation.
Studies have been performed, which confirm the conclusions that steels of this type require a thorough
control of solidification conditions. Obtained results illustrate a significant influence of the cooling rate on cracking,
manganese and aluminium segregation and parameters of the alloy dendritic structure. Electroslag remelting resulted
in improvement of the structure and led to reduction of the size of non-metallic inclusions in the studied metal without
any significant changes in Mn, Al, Cr content, which is one of the conditions for producing large-sized homogeneous
ingots. Metallographic investigations showed that the microstructure of all the studied steel samples is characteristic for
austenitic steel with dendritic crystal growth. Dendritic structure in the metal of EBM ingot is homogeneous, distances
between first and second order axes in the ingot middle and upper parts are equal to 136.6…146.5 and 60.54…8.92 μm,
respectively. Completion of formation of the required final microstructure of the studied steel takes place after further
heat and thermodeformational treatment. EBM of cast billets allows reaching the required level of metal homogeneity
and specified level of properties in the final product with a smaller number of stages and duration of thermomechanical
treatment, and reducing resource consumption. 32 Ref., 1 Tabl., 9 Fig.
Keywords: high-strength light steel, ingot, electroslag remelting, microstructure, liquation, phase composition
Received: 05.09.2023
Accepted: 26.12.2023
References
1. Hansoo Kim, Dong-Woo Suh, Nack J. Kim. (2013) Fe-Al-Mn-C lightweight structural alloys: A review on the microstructures and mechanical properties. Sci. and Technol. of Advanced Materials, 14(1), 11.
https://doi.org/10.1088/1468-6996/14/1/0142052. Frommeyer, G., Drewes, E.J., Engl, B. (2000) Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Rev. Met. Paris, 97(10), 1245-1253.
https://doi.org/10.1051/metal:20001103. Shangping, Chen, Radhakanta, Rana, Arunansu, Haldar, Ranjit, Kumar Ray (2017) Current state of Fe-Mn-Al-C low density steels. Progress in Mater. Sci., 89, 345-391.
https://doi.org/10.1016/j.pmatsci.2017.05.0024. Shao-bin, Bai, Yong-an, Chen, Xin, Liu et al. (2023) Research status and development prospect of Fe-Mn-C-Al system low-density steels. J. of materials Research and Technology, 25, 1537-1559.
https://doi.org/10.1016/j.jmrt.2023.06.0375. Zambrano, O.A. (2018) A general perspective of Fe-Mn-Al-C steels. J. Mater. Sci., 53(20), 14003-14062.
https://doi.org/10.1007/s10853-018-2551-66. Frommeyer, G., Brüx, U. (2006) Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels. Steel Res. Int., 77, 627-633.
https://doi.org/10.1002/srin.2006064407. Raabe, D., Springer, H., Gutierrez-Urrutia, I. et al. (2014) Combinatorial Synthesis and microstructure-property relations for low-density Fe-Mn-Al-C austenitic steels. JOM, 66, 1845-1856.
https://doi.org/10.1007/s11837-014-1032-x8. Howell, R.A., Aken, D.C. (2009) A literature review of age hardening Fe-Mn-Al-C alloys. Iron Steel Technol., 6, 193-212. DOI: https://scholarsmine.mst.edu/matsci_eng_facwork/1283/
9. Chen, P., Li, X., Yi, H. (2020) The κ-carbides in low-density Fe-Mn-Al-C Steels: A review on their structure, precipitation and deformation mechanism. Metals, 10(8), 1021.
https://doi.org/10.3390/met1008102110. Khaple S., Golla B.R., Prasad V.V.S. (2023) A review on the current status of Fe-Al based ferritic lightweight steel. Defence Technology, 26, 1-22.
https://doi.org/10.1016/j.dt.2022.11.01911. Frommeyer, G., Drewes, E.J., Engl, B. (2000) Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Rev. Met. Paris, 97(10), 1245-1253.
https://doi.org/10.1051/metal:200011012. Frommeyer, G., Jiménez, J.A. (2005) Structural superplasticity at higher strain rates of hypereutectoid Fe-5.5Al-1Sn- 1Cr-1.3C steel. Metall. and Mater. Transact. A, 36, 295-300.
https://doi.org/10.1007/s11661-005-0302-113. Chen, P., Xiong, X.C., Wang, G.D., Yi, H.L. (2016) The origin of the brittleness of high aluminum pearlite and the method for improving ductility. Scr. Mater., 124, 42-46.
https://doi.org/10.1016/j.scriptamat.2016.06.03114. Liu, D., Cai, M., Ding, H., Han, D. (2018) Control of inter/ intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel. Mater. Sci. Eng. A, 715, 25-32.
https://doi.org/10.1016/j.msea.2017.12.10215. Frommeyer, G., Brüx, U., Neumann P. (2003) Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int., 43, 438-346.
https://doi.org/10.2355/isijinternational.43.43816. Gutierrez-Urrutia, I., Raabe, D. (2013) Influence of Al content and precipitation state on the mechanical behaviour of austenitic high-Mn low-density steels. Scripta Mater., 68, 343-347.
https://doi.org/10.1016/j.scriptamat.2012.08.03817. Gutierrez-Urrutia, I. (2021) Low density Fe-Mn-Al-C steels: phase structures, mechanisms and properties. ISIJ Int., 61(1), 16-25.
https://doi.org/10.2355/isijinternational.ISIJINT-2020-46718. Ding, H., Li, H., Misra, R.D.K. et al. (2017) Strengthening mechanisms in low density Fe-26Mn-xAl-1C steels. Steel Research Int., 89, 1700381.
https://doi.org/10.1002/srin.20170038119. Kim, K.-W., Park, S.-J., Moon, J. et al. (2020) Characterization of microstructural evolution in austenitic Fe-Mn-Al-C lightweight steels with Cr content. Materials Characterization, 170, 110717.
https://doi.org/10.1016/j.matchar.2020.11071720. Zhuang, C. Liu, J. Li, C., Tang, D. (2019) Study on high temperature solidification behavior and crack sensitivity of Fe-Mn-C-Al twip steel. Scientific Reports, 9(1), 15962-15977.
https://doi.org/10.1038/s41598-019-52381-521. Lan, P. Tang, H., Zhang, J. (2016) Solidification microstructure, segregation, and shrinkage of Fe-Mn-C twinning-induced plasticity steel by simulation and experiment. Metallurg. and Mater. Transact. A, 47(6), 2964-2984.
https://doi.org/10.1007/s11661-016-3445-322. Shen, Y. Liu, J. Yang, S. et al. (2019) Dendrite growth behavior in directionally solidified Fe-C-Mn-Al alloys. J. of Crystal Growth, 511, 118-126.
https://doi.org/10.1016/j.jcrysgro.2019.01.02323. Lee, C.-Y., Lee, Y.-K. (2014) The solidification mode of Fe- Mn-Al-C lightweight steel. JOM, 66(9), 1794-1799.
https://doi.org/10.1007/s11837-014-1000-524. Yaozu Shen, Shufeng Yang, Jianhua Liu et al. (2019) Study on micro segregation of high alloy Fe-Mn-C-Al steel. Steel Research Int., 90, 1800546.
https://doi.org/10.1002/srin.20180054625. Grajcar, A., Kaminska, M., Opiela, M. et al. (2012) Segregation of alloying elements in thermomechanically rolled medium-Mn multiphase steels. Mater. Manuf. Eng., 55(2), 256-264.
26. Wietbrock, B., Bambach, M., Seuren, S., Hirt, G. (2010) Homogenization strategy and material characterization of high-manganese TRIP and TWIP steels. Mater. Sci. Forum, 638-642, 3134-3139.
https://doi.org/10.4028/www.scientific.net/MSF27. Senk, H. Emmerich, J. Rezende, R. Siquieri D. (2007) Estimation of segregation in iron-manganese steels. Advanced Engineering Materials, 8, 695-702.
https://doi.org/10.1002/adem.20070013828. Shen, Y. Yang, S. Liu et al. (2019) Study on micro segregation of high alloy Fe-Mn-C-Al steel. Steel Research Int., 90(5), 2963-2975.
https://doi.org/10.1002/srin.20180054629. Jan Reitz, Burkhard Wietbrock, Silvia Richter et al. (2011) Enhanced homogenization strategy by electroslag remelting of high-manganese TRIP and TWIP steels. Advanced Engineering Materials, 13(5), 395-399.
https://doi.org/10.1002/adem.20100032230. Kang-Wei LI, Chang-Ling ZHUANG, Jian-Hua LIU et al. (2015) Smelting and casting technologies of Fe-25Mn-3Al- 3Si twinning induced plasticity steel for automobiles. J. of Iron and Steel Research Int., 22 (Supplement 1), 75-79.
https://doi.org/10.1016/S1006-706X(15)30142-431. Sa Ge, Mihaiela Isac, Roderick Ian Lawrence Guthrie (2013) Progress in strip casting technologies for steel; technical developments. ISIJ Int., 53(5), 729-742.
https://doi.org/10.2355/isijinternational.53.72932. Medovar, L., Stovpchenko G., Lisova, L. et al. (2023) Features and restrictions of electroslag remelting with silica-bearing slags for lightweight high manganese steel. Steel Research Int., 94(10), 202300161.
https://doi.org/10.1002/srin.202300161
Suggested Citation
V.A. Zaitsev, Yu.V. Kostetskyi, G.O. Polishko, V.A. Kostin, V.P. Petrenko, E.O. Pedchenko (2023) Investigations of the quality of metal of high-manganese steel alloyed by aluminium and chromium after electroslag remelting.
The Paton Welding J., 12, 39-49.