Print

2024 №12 (02) DOI of Article
10.37434/tpwj2024.12.03
2024 №12 (04)

The Paton Welding Journal 2024 #12
The Paton Welding Journal, 2024, #12, 16-22 pages

Formation of porous coatings on titanium alloys by the method of plasma electrolytic oxidation in alkaline electrolytes saturated with phosphates and bio-additives

N.Yu. Imbirovych1, O.Yu. Povstyanoy1, K.J. Kurdzydlowski2, V.V. Tkachuk1

1Lutsk National Technical University 75 Lvivska Str., 43018, Lutsk, Ukraine. E-mail: n.imbirovych@lntu.edu.ua
2Bialystok University of Technology, 45A, Wiejska Str., 15-351 Bialystok, Poland

Abstract
Environmentally friendly electrolytes have been developed to ensure the formation of coatings based on titanium alloys by plasma electrolytic processing, which contain phosphates in the form of sodium pyrophosphate (Na4P2O7) and sodium hexamethophosphate (Na6P6O18), calcium-containing components in the form of calcium hydroxide and hydroxylapatite, as well as a bio-additive in the form of diatomite in different concentrations. The study of the stages of PEO coating formation is presented with the help of time dependences of the voltage change on the anode during the processing. The presented dependencies made it possible to establish the optimal ratio of Ia/Ic current density, at which uniform coatings are formed. The through-thickness porosity of the synthesized PEO-coatings in different modes was determined through experimental studies. It is shown that coatings formed in an electrolyte with phosphates are characterized by the maximum rate of such porosity (0.75 %), while high water absorption is characteristic of coatings formed in an electrolyte with diatomite, which is 1.21 % against 0.6 %. Such values satisfy the conditions of biocompatibility of the materials.
Keywords: plasma electrolytic oxidation; synthesis, biocompatibility, coating, porosity, thickness

Received: 17.07.2024
Received in revised form: 20.11.2024
Accepted: 27.12.2024

References

1. Imbirovych, N., Boyarska, I., Povstyanoy, O. et al. (2023) Modification of oxide coatings synthesized on zirconium alloy by the method of plasma electrolytic oxidation. AIP Conf. Proc., 2949(1), 020011. https://doi.org/10.1063/5.0165655
2. Povstyanoy, O., Imbirovich, N., Redko, R. et al. (2024) Numerical evaluation of the properties of highly efficient titanium porous materials. Eds by V. Tonkonogyi. Advanced Manufacturing Processes InterPartner 2023. Lecture Notes in Mechanical Engineering. Springer, Cham., 307-317. https://doi.org/10.1007/978-3-031-42778-7_28
3. Duan, H., Yan, C., Wang, F. (2007) Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution. Electrochim. Acta, 52(12), 5002-5009. https://doi.org/10.1016/j.electacta.2007.02.021
4. Tillous, K., Toll-Duchanoy, T., Bauer-Grosse, E. et al. (2009) Microstructure and phase composition of microarc oxidation surface layers formed on aluminium and its alloys 2214-T6 and 7050-T74. Surf. Coat. Technol., 203(19), 2969-2973. https://doi.org/10.1016/j.surfcoat.2009.03.021
5. Curran, J.A., Clyne, T.W. (2005) Thermo-physical properties of plasma electrolytic oxide coatings on aluminium. Surf. Coat. Technol., 199(2-3), 168-176. https://doi.org/10.1016/j.surfcoat.2004.09.037
6. Petrosyanis, A.A., Malyshev, V.N., Fedorov, V.A., Markov, G.A. (1984) Wear kinetics of coatings made by microarcing oxidation. Trenie i Iznos, 5, 350-354.
7. Student, M., Pohrelyuk, I., Padgurskas, J. et al. (2023) Influence of plasma electrolytic oxidation of cast Al-Si alloys on their phase composition and abrasive wear resistance. Coatings, 13(3), 637. https://doi.org/10.3390/coatings13030637
8. Yang, X., Ma, A., Liu, J. et al. (2019) Microstructure and corrosion resistance of yellow MAO coatings. Surface Eng., 35(4), 334-342. https://doi.org/10.1080/02670844.2018.1445939
9. Mori, Y., Koshi, A., Jinsun Liao, J. et al. (2014) Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate - Silicate mixture electrolytes. Corrosion Sci., 88, 254-262. https://doi.org/10.1016/j.corsci.2014.07.038
10. Nykyforchyn, H.M., Agarwala, V.S., Klapkiv, M.D., Posuvailo, V.M. (2008) Simultaneous reduction of wear and corrosion of titanium, magnesium and zirconium alloys by surface plasma electrolytic oxidation treatment. Advanced Materials Research, 38, 27-35. https://doi.org/10.4028/www.scientific.net/AMR.38.27
11. Pauporté, T., Finne, J., Kahn-Harari, A., Lincot, D. (2005) Growth by plasma electrolysis of zirconium oxide films in the micrometer range. Surf. Coat. Technol., 199(2-3), 213-219. https://doi.org/10.1016/j.surfcoat.2005.03.003
12. Timoshenko, A.V., Magurova, Yu.V. (2005) Investigation of plasma electrolytic oxidation processes of magnesium alloy MA2-1 under pulse polarisation modes. Surf. Coat. Technol., 199(2-3), 135-140. https://doi.org/10.1016/j.surfcoat.2004.09.036
13. Zhou, H., Li, F., He, B. et al. (2007) Air plasma sprayed thermal barrier coatings on titanium alloy substrates. Surf. Coat. Technol., 201(16-17), 7360-7367. https://doi.org/10.1016/j.surfcoat.2007.02.010
14. Shokouhfar, M., Dehghanian, C., Baradaran, A. (2011) Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance. Appl. Surf. Sci., 257(7), 2617-2624. https://doi.org/10.1016/j.apsusc.2010.10.032
15. Stojadinovic, S., Vasilic, R., Petkovic, M. et al. (2010) Luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid. Electrochim. Acta, 55(12), 3857-3863. https://doi.org/10.1016/j.electacta.2010.02.011
16. Snizhko, L.O., Yerokhin, A.L., Pilkington, A. et al. (2004) Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions. Electrochim. Acta, 49(13), 2085-2095. https://doi.org/10.1016/j.electacta.2003.11.027
17. Stojadinović, S., Rastko, V., Petkovic, M., Zekovic, L. (2011) Plasma electrolytic oxidation of titanium in heteropolytungstate acids. Surf. Coat. Technol., 206(2-3), 575-581. https://doi.org/10.1016/j.surfcoat.2011.07.090
18. Sundararajan, G., Rama Krishna, L. (2003) Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surf. Coat. Technol., 167(2-3), 269-277. https://doi.org/10.1016/S0257-8972(02)00918-0
19. Brewer, W.D., Bird, R.K., Wallace, T.A. (1998) Titanium alloys and processing for high speed aircraft. Mater. Sci. and Engin.: A, 243(1-2), 299-304. https://doi.org/10.1016/S0921-5093(97)00818-6
20. Leyens, C., Peters, M. (2003) Titanium and Titanium Alloys: Fundamentals and Applications. Wiley-VCH, Weinheim, Germany. https://doi.org/10.1002/3527602119
21. Yao, Z.Q., Ivanisenko, Yu., Diemant, T. et al. (2010) Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation. Acta Biomater., 6(7), 2816-2825. https://doi.org/10.1016/j.actbio.2009.12.053
22. Hench, L.L. (1998) Biomaterials: A forecast for the future. Biomaterials, 19, 1419-1423. https://doi.org/10.1016/S0142-9612(98)00133-1
23. Jae-Young Rho, Liisa Kuhn-Spearing, Peter Zioupos (1998) Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics, 20(2), 92-102. https://doi.org/10.1016/S1350-4533(98)00007-1
24. Dabdoub, S.M., Tsigarid, A.A., Kumar, P.S. (2013) Patient-specific analysis of periodontal and peri-implant microbiomes. J. of Dental Research, 92(12), 1685-1755. https://doi.org/10.1177/0022034513504950
25. Fakhr Nabavi, H., Aliofkhazraei, M. (2019) Morphology, composition and electrochemical properties of bioactive- TiO2/HA on CP-Ti and Ti6Al4V substrates fabricated by alkali treatment of hybrid plasma electrolytic oxidation process (Estimation of porosity from EIS results). Surf. Coat. Technol., 375, 266-291 https://doi.org/10.1016/j.surfcoat.2019.07.032
26. Azmat, A., Asrar, S., Channa, I.A. et al. (2023) Comparative study of biocompatible titanium alloys containing non-toxic elements for orthopaedic implants. Crystals, 13, 467. https://doi.org/10.3390/cryst13030467
27. Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K. (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants. A review. Progress in Mater. Sci., 54, 397-425. https://doi.org/10.1016/j.pmatsci.2008.06.004
28. Zyman, Z.Z., Rokhmistrov, D.V., Glushko, V.I. (2010) Structural and compositional features of amorphous calcium phosphate at the early stage of precipitation. J. Mater. Sci. Mater. Med., 21(1), 123-130. https://doi.org/10.1007/s10856-009-3856-4
29. Furko, M., Balázsi, K., Balázsi, C. (2023) Calcium phosphate loaded biopolymer composites - A comprehensive review on the most recent progress and promising trends. Coatings, 13, 360. https://doi.org/10.3390/coatings13020360
30. Colombo, P.V., Tanner, A.C.R. (2019) The role of bacterial biofilms in dental caries and periodontal and peri-implant diseases: A historical perspective. J. Dent. Res., 98(4), 373-385. https://doi.org/10.1177/0022034519830686
31. Mazinani, A., Nine, M.J., Chiesa, R. et al. (2021) Graphene oxide (GO) decorated on multi-structured porous titania fabricated by plasma electrolytic oxidation (PEO) for enhanced antibacterial performance. Materials & Design, 20, 109443. https://doi.org/10.1016/j.matdes.2020.109443
32. Arash Fattah-alhosseini, Maryam Molaei, Navid Attarzadeh et al. (2020) On the enhanced antibacterial activity of plasma electrolytic oxidation (PEO) coatings that incorporate particles: A review. Ceramics Intern., 46(13), 20587-20607 https://doi.org/10.1016/j.ceramint.2020.05.206
33. Totosko, O.V., Stukhlyak, P.D., Mykytyshyn, A.H., Levytskyi, V.V. (2020) Investigation of electrospark hydraulic shock influence on adhesive-cohesion characteristics of epoxy coatings. Functional materials, 27(4), 760-766. https://doi.org/10.15407/fm27.04.760
34. Shu-Chuan Liao, Chia-Ti Chang, Chih-Ying Chen et al. (2020) Functionalization of pure titanium MAO coatings by surface modifications for biomedical applications. Surf. Coat. Technol., 394, 125812. https://doi.org/10.1016/j.surfcoat.2020.125812
35. Topal, E., Rajendran, H., Zgłobicka, I. et al. (2020) Numerical and experimental study of the mechanical response of diatom frustules. Nanomaterials, 10, 959. https://doi.org/10.3390/nano10050959
36. Dunleavy, C.S., Golosnoy, I.O., Curran, J.A., Clyne, T.W. (2009) Characterization of discharge events during plasma electrolytic oxidation. Surf. Coat. Tecnol., 203, 3410-3419. https://doi.org/10.1016/j.surfcoat.2009.05.004
37. Wang, H.Y., Zhu, R.F., Lu, Y.P. et al. (2014) Preparation and properties of plasma electrolytic oxidation coating on sandblasted pure titanium by a combination treatment. Mater. Sci. Eng. C. Mater. Biol. Appl., 42, 657-664. https://doi.org/10.1016/j.msec.2014.06.005
38. Kang, B.S., Sul, Y.T., Johansson, C.B. et al. (2012) The effect of calcium ion concentration on the bone response to oxidized titanium implants. Clinical Oral Implants Research, 23, 690-697. https://doi.org/10.1111/j.1600-0501.2011.02177.x
39. Wang, M.S., Lee, F.P., Shen, Y.D. et al. (2015) Surface, biocompatible and hemocompatible properties of meta-amorphous titanium oxide film. Int. J. of Applied Ceramic Technology, 12, 341-350. https://doi.org/10.1111/ijac.12184

Suggested Citation

N.Yu. Imbirovych, O.Yu. Povstyanoy, K.J. Kurdzydlowski, V.V. Tkachuk (2024) Formation of porous coatings on titanium alloys by the method of plasma electrolytic oxidation in alkaline electrolytes saturated with phosphates and bio-additives. The Paton Welding J., 12, 16-22.