The Paton Welding Journal, 2025, #1, 3-9 pages
Diffusion bonding of Ti6-4 alloy through multilayer interlayers of an eutectic composition based on Ti–Cu system
T.V. Melnychenko, A.I. Ustinov, O.Yu. Klepko, O.V. Samofalov
E.O. Paton Electric Welding Institute of the NASU.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: melnychenko21@ukr.net
Abstract
The regularities of diffusion bonding of the titanium alloy Ti6-4 through multilayer interlayers of eutectic composition based
on Ti–Cu system, produced by electron beam deposition under vacuum, were investigated in this work. The microstructure
and mechanical properties of the joints were analyzed using scanning electron microscopy and by determining their shear
strength. It is shown that multilayer interlayers provide defect-free joints without degradation of titanium alloy properties at a
temperature of 920‒950 °C, corresponding to the melting range of the interlayer. It is established that the nature of the reaction
interaction of the components of the interlayer and Ti6-4 alloy during heating depends on the temperature and melting range of
the multilayer interlayer and determines the microstructure and phase composition of the joint. Absence of continuous layers of
intermetallics (TiCu, Ti2Cu) in the joint and formation of a dispersed Widmanstätten structure with copper and nickel content
of < 7 at.% provide the joint strength at the level of the Ti6-4 alloy.
Keywords: multilayer foil, EB-PVD, Ti6-4 alloy, diffusion bonding, microstructure, shear strength
Received: 31.07.2024
Received in revised form: 23.10.2024
Accepted: 23.01.2025
References
1. Leyens, C., Peters, M. (2003) Titanium and titanium alloys:
Fundamentals and applications. WILEY-VCH, Weinheim.
2. Lutjering, G., Williams, J.C. (2007) Titanium. 2 Ed. Springer-Verlag, Berlin.
3. Balasubramanian, T., Balasubramanian, V., Muthumanikkam,
M. (2011) Fatigue performance of gas tungsten arc, electron
beam, and laser beam welded Ti–6Al–4V alloy joints. J. Mater.
Eng. and Performance, 20, 1620–1630. DOI: https://doi.org/10.1007/s11665-010-9822-y
4. Ahmed, Y.M., Salleh, K., Sahari, M., Ishak, M. (2012) Welding
of titanium (Ti–6Al–4V) alloys: A review. In: Proc. of the
National Graduate Conf., Kajang, Malaysia, 8–10.
5. Zamkov, V.N., Prilutsky, V.P., Petrichenko, I.K. et al. (2001)
Effect of the method of fusion welding on properties of welded
joints in alloy Ti–6AI–4V. The Paton Welding J., 4, 2–6.
6. Murthy, K.K., Potluri, N.B., Sundaresan, S. (1997) Fusion
zone microstructure and fatigue crack growth behaviour in
Ti–6Al–4V alloy weldments. Mater. Sci. and Technol., 13(6),
503–510. DOI: https://doi.org/10.1179/mst.1997.13.6.503
7. Borisova, E.A. (1980) Titanium alloys. Metallography of titanium
alloys. Metallurgiya, Moscow [in Russian].
8. Shapiro, A., Rabinkin, A. (2003) State of the art of titanium-
based brazing filler metals. Welding J., 82(10), 36–43.
9. Elrefaey, A., Tillmann, W. (2009) Effect of brazing parameters
on microstructure and mechanical properties of titanium
joints. J. of Materials Proc. Technology, 209, 4842–4849.
DOI: https://doi.org/10.1016/j.jmatprotec.2009.01.006
10. Shapiro, A.E. (2016) Brazing of conventional titanium alloys.
ASM Metal Handbook, 6, 1–25.
11. Ustinov, A.I., Falchenko, Yu.V., Ishchenko, A.Ya et al. (2008)
Diffusion welding of γ-TiAl based alloys through nano-layered
foil of Ti/Al system. Intermetallics, 16, 1043–1045. DOI:
https://doi.org/10.1016/j.intermet.2008.05.002
12. Murray, J.L. (1983) The Cu–Ti (copper-titanium) system.
Bulletin of Alloy Phase Diagrams, 4(1), 81–95.
13. Cacciamani, G., Schuster, J.C., Effenberg, G., Ilyenko, S.
(2006) Cu–Ni–Ti (copper–nickel–titanium). Light Metal Ternary
Systems: Phase Diagrams, Crystallographic and Thermodynamic
Data, 11, 266–283.
14. Ustinov, A.I., Melnychenko, T.V., Demchenkov, S.A.
(2021) Structural mechanism of plastic deformation of Al/
α-Si multilayer foils at heating under load. Materials Sci.
and Eng.: A, 810, 141030. DOI: https://doi.org/10.1016/j.msea.2021.141030
15. Ganjeh, E., Sarkhosh, H., Bajgholi, M.E. et al. (2012) Increasing
Ti–6Al–4V brazed joint strength equal to the base metal
by Ti and Zr amorphous filler alloys. Mater. Charact., 71,
31–40. DOI: https://doi.org/10.1016/j.matchar.2012.05.016
Suggested Citation
T.V. Melnychenko, A.I. Ustinov, O.Yu. Klepko, O.V. Samofalov (2025) Diffusion bonding of Ti6-4 alloy through multilayer interlayers of an eutectic composition based on Ti–Cu system.
The Paton Welding J., 01, 3-9.