The Paton Welding Journal, 2025, #1, 28-34 pages
Production of ferrovanadium under the conditions of electroslag melting
Yu.V. Kostetskyi, E.O. Pedchenko, M.O. Vdovin, G.O. Polishko, V.L. Petrenko, V.A. Zaytsev
E.O. Paton Electric Welding Institute of the NASU.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: y.kostetsky@paton.kiev.ua
Abstract
The electroaluminothermic process is considered for ferrovanadium production from a vanadium-containing charge mixture by
reducing vanadium oxide with aluminium in a slag layer with simultaneous electrical heating of the slag bath. The key factors
influencing the fundamental parameters of the process have been identified. Samples of final slag were examined, and chemical
composition and metal particle distribution in the slag layer were determined.
Keywords: electroslag process, ferrovanadium, electroaluminothermic reduction, slag, chemical composition, metal, inclusions
Received: 15.08.2024
Received in revised form: 30.09.2024
Accepted: 28.01.2025
References
1. Moskalyk, R.R., Alfantazi, A.M. (2003) Processing of vanadium:
a review. Minerals Engineering, 16(9), 793–805. DOI:
https://doi.org/10.1016/S0892-6875(03)00213-9
2. Yang, B., He, J., Zhang, G. et al. (2021) Chapter 11 — Applications
of vanadium in the steel industry. Vanadium. Elsevier,
267–332. DOI: https://doi.org/https://doi.org/10.1016/B978-0-12-818898-9.00011-5
3. Simandl, G.J. (2022) Vanadium as a critical material: Economic
geology with emphasis on market and the main deposit
types. Applied Earth Sci., 131(4), 218–236. DOI: https://doi.org/10.1080/25726838.2022.2102883
4. Swinbourne, D.R., Richardson, T., Cabalteja, F. (2016) Understanding
ferrovanadium smelting through computational
thermodynamics modelling. Mineral Processing and Extractive Metallurgy, 125(1), 45–55. DOI: https://doi.org/10.1179/1743285515Y.0000000019
5. Liu, Z., He, B., Lyu, T., Zou, Y. (2021) A review on additive
manufacturing of titanium alloys for aerospace applications:
Directed energy deposition and beyond Ti–6Al–4V. JOM,
73(6), 1804–1818. DOI: https://doi.org/10.1007/S11837-021-04670-6
6. Villalobos, J.C., Del-Pozo, A., Campillo, B. et al. (2018) Microalloyed
steels through history until 2018: Review of chemical
composition, processing and hydrogen service. Metals,
8(5), 351. DOI: https://doi.org/10.3390/met8050351
7. Baker, T.N. (2016) Microalloyed steels. Ironmaking & Steelmaking,
43(4), 264‒307. DOI: https://doi.org/10.1179/1743281215Y.0000000063
8. Kim, S., Baek, E., Jang, B. (2021) The effect of vanadium addition
on the fracture and wear resistance of indefinite chilled
cast iron. Materials Today Communications, 26(3), 101819.
DOI: https://doi.org/10.1016/j.mtcomm.2020.101819
9. Gasik, M. (2013) Technology of vanadium ferroalloys. Handbook
of Ferroalloys. Elsevier, 397–409. DOI: https://doi.org/10.1016/C2011-0-04204-7
10. Yang, B., He, J., Zhang, G., Guo, J.B. (2021) Chapter 10 —
Ferrovanadium. Vanadium. Elsevier, 243–266. DOI: https://doi.org/10.1016/B978-0-12-818898-9.00010-3
11. Gasik, M., Dashevskii, V., Bizhanov, A. (2021) Ferroalloys:
Theory and practice. Springer. DOI: https://doi.org/10.1007/978-3-030-57502-1
12. Lyakishev N.P., Pliner Yu.L. (1978) Aluminothermy. Moscow,
Metallurgiya [in Russian].
13. Hallstedl, B. (1990) Assessment of the CaO–Al2O3 system.
J. of the American Ceramic Society, 73(1), 15–23. DOI:
https://doi.org/10.1111/j.1151-2916.1990.tb05083.x
14. GOST 30756–2001: Fluxes for electroslag technologies.
General specifications. Minsk, Interstate Council for Standardization,
Metrology and Certification.
15. Nekrasov, O.P., Veretenchenko, B.A. (2018) Surface phenomena
and disperse systems. Kharkiv, NTU KhPI.
Suggested Citation
Yu.V. Kostetskyi, E.O. Pedchenko, M.O. Vdovin, G.O. Polishko, V.L. Petrenko, V.A. Zaytsev (2025) Production of ferrovanadium under the conditions of electroslag melting.
The Paton Welding J., 01, 28-34.
Sorry, the PDF of this issue is not yet available