The Paton Welding Journal, 2025, #8, 44-54 pages
Model of the anode boundary layer in welding arcs
I.V. Krivtsun1, A.I. Momot1,2, I.B. Denysenko1,3, U. Reisgen4, O. Mokrov4, R. Sharma4
1E.O. Paton Electric Welding Institute of the NASU.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: momot.andriy@gmail.com
2Taras Shevchenko National University of Kyiv
64/13 Volodymyrs’ka Str., 01601, Kyiv, Ukraine,
3V.N. Karazin Kharkiv National University
4 Svobody Sq., 61022, Kharkiv, Ukraine
4Welding and Joining Institute, RWTH Aachen University
49 Pontstrasse, 52062, Germany
Abstract
A one-dimensional model of the anode boundary layer in atmospheric pressure electric arcs with refractory cathode and evaporating
anode is proposed for two modes of the anode metal evaporation: diffusive and convective. The corresponding systems
of differential and algebraic equations are formulated to compute the spatial distributions of the number densities and diffusive
flux densities of electrons, ions, and atoms; the electron temperature and the heavy particle (atoms and ions) temperature; and
the electric potential in the plasma of the anode layer. Additionally, the model allows to calculate the heat flux introduced by
the arc into the anode. The boundary conditions for the differential equations of this model at the boundaries of the anode layer
with the arc column plasma and the space-charge sheath are formulated. An approach for determining the plasma parameters at
these boundaries is also proposed for each evaporation mode.
Keywords: anode boundary layer, welding arc, modelling, evaporating anode, metal vapor, diffusive evaporation, convective
evaporation
Received: 12.05.2025
Received in revised form: 17.06.2025
Accepted: 24.07.2025
References
1. Murphy, A.B. (2010) The effects of metal vapour in arc welding. J. of Physics D: Applied Physics, 43, 434001, 91-104.
https://doi.org/10.1088/0022-3727/43/43/4340012. Schnick, M., Fuessel, U., Hertel, M. et al. (2010) Modelling of gas-metal arc welding taking into account metal vapour. J. of Physics D: Applied Physics, 43, 434008.
https://doi.org/10.1088/0022-3727/43/43/4340083. Hertel, M., Trautmann, M., Jäckel, S., Füssel, U. (2017) The role of metal vapour in gas metal arc welding and methods of combined experimental and numerical process analysis. Plasma Chemistry and Plasma Processing, 37, 531-547.
https://doi.org/10.1007/s11090-017-9790-14. Cho, Y.T., Cho, W.I., Na, S.J. (2011) Numerical analysis of hybrid plasma generated by Nd:YAG laser and gas tungsten arc. Optics & Laser Technology, 43, 711-720.
https://doi.org/10.1016/j.optlastec.2010.09.0135. Tanaka, M., Tsujimura, Y., Yamazaki, K. (2012) Dynamic behaviour of metal vapour in arc plasma during TIG welding. Welding in the World, 56, 30-36.
https://doi.org/10.1007/BF033211426. Mougenot, J., Gonzalez, J.J., Freton, P., Masquère, M. (2013) Plasma-weld pool interaction in tungsten inert-gas configuration. J. of Physics D: Applied Physics, 46, 135206.
https://doi.org/10.1088/0022-3727/46/13/1352067. Krivtsun, I., Demchenko, V., Krikent, I. et al. (2015) Distributed and integrated characteristics of the near-anode plasma of the welding arc in TIG and hybrid (TIG+CO2-laser) welding. Mathematical Modelling of Weld Phenomena, 11, 837-874.
https://doi.org/10.15407/tpwj2015.04.018. Krivtsun, I.V. (2018) Anode processes in welding arcs. The Paton Welding J, 11-12, 91-104.
https://doi.org/10.15407/tpwj2018.12.109. Knight, C.J. (1979) Theoretical modeling of rapid surface vaporization with back pressure. AIAA J., 17, 519-523.
https://doi.org/10.2514/3.6116410. Krivtsun, I.V., Momot, A.I., Denysenko, I.B. et al. (2024) Transport properties and kinetic coefficients of copper thermal plasmas. Physics of Plasmas, 31, 083505.
https://doi.org/10.1063/5.021675311. Krivtsun, I.V., Momot, A.I., Antoniv, D.V., Qin, B. (2023) Characteristics of atmospheric pressure Ar-plasma around a spherical particle: Numerical study. Physics of Plasmas, 30, 043513.
https://doi.org/10.1063/5.014101512. Heberlein, J., Mentel, J., Pfender, E. (2009) The anode region of electric arcs: a survey. J. of Physics D: Applied Physics, 43, 023001.
https://doi.org/10.1088/0022-3727/43/2/02300113. Zhdanov, V.M. (2002) Transport processes in multicomponent plasma. CRC Press.
https://doi.org/10.1201/978148226510114. Almeida, N.A., Benilov, M.S., Naidis, G.V. (2008) Unified modelling of near-cathode plasma layers in high-pressure arc discharges. J. of Physics D: Applied Physics 41, 245201.
https://doi.org/10.1088/0022-3727/41/24/24520115. Semenov, I.L., Krivtsun, I.V., Reisgen, U. (2016) Numerical study of the anode boundary layer in atmospheric pressure arc discharges. J. of Physics D: Applied Physics, 49, 105204.
https://doi.org/10.1088/0022-3727/49/10/10520416. Krikent, I.V., Krivtsun, I.V., Demchenko, V.F. (2014) Simulation of electric arc with refractory cathode and evaporating anode, The Paton Welding J., 9, 17-24.
https://doi.org/10.15407/tpwj2014.09.0217. Benilov, M.S., Marotta, A. (1995) A model of the cathode region of atmospheric pressure arcs. J. of Physics D: Applied Physics, 28, 1869.
https://doi.org/10.1088/0022-3727/28/9/01518. Gao, S., Momot, A., Krivtsun, I. et al. (2025) Interaction between a spherical particle and atmospheric pressure currentless argon plasma. East European J. of Physics, 388-395.
https://doi.org/10.26565/2312-4334-2025-1-4819. Lieberman, M.A., Lichtenberg, A.J. (1994) Principles of plasma discharges and materials processing. Wiley.
20. Krivtsun, I.V., Momot, A.I., Denysenko, I.B. (2025) Model of the anode layer of an electric arc with an evaporating anode, Avtomatyche Zvaryuvannya, 3, 3-9.
https://doi.org/10.37434/as2025.03.0121. Frezzotti, A. (2007) A numerical investigation of the steady evaporation of a polyatomic gas. European J. of Mechanics-B/Fluids, 26, 93-104.
https://doi.org/10.1016/j.euromechflu.2006.03.00722. Bird, E., Liang, Z. (2019) Transport phenomena in the Knudsen layer near an evaporating surface. Physical Review E, 100, 043108.
https://doi.org/10.1103/PhysRevE.100.04310823. Godyak, V.A., Sternberg, N. (2002) Smooth plasma-sheath transition in a hydrodynamic model. IEEE Transact. on Plasma Sci., 18, 159-168.
https://doi.org/10.1109/27.4551924. Zhang, Y., Evans, J.R., Yang, S. (2011) Corrected values for boiling points and enthalpies of vaporization of elements in handbooks. J. of Chemical & Engineering Data, 56, 328-337.
https://doi.org/10.1021/je101108625. Kramida, A., Ralchenko, Yu., Reader, J., NIST ASD Team (2024) NIST Atomic Spectra Database (ver. 5.12), Online. https://physics.nist.gov/asd National Institute of Standards and Technology, Gaithersburg, MD. DOI: https://doi.org/10.18434/T4W30F
26. Loock, H.P., Beaty, L.M., Simard, B. (1999) Reassessment of the first ionization potentials of copper, silver, and gold. Physical Review A, 59, 873.
https://doi.org/10.1103/PhysRevA.59.873
Suggested Citation
I.V. Krivtsun, A.I. Momot, I.B. Denysenko, U. Reisgen, O. Mokrov, R. Sharma (2025) Model of the anode boundary layer in welding arcs.
The Paton Welding J., 08, 44-54.