The Paton Welding Journal, 2025, #9, 3-9 pages
Narrow gap welding of PT-3V titanium alloy with a controlled magnetic field
S.V. Akhonin, V.Yu. Bilous, R.V. Selin, I.K. Petrichenko, L.M. Radchenko, S.B. Rukhansky
E.O. Paton Electric Welding Institute of the NASU.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: belousvy@gmail.com
Abstract
Tungsten inert gas (TIG) narrow-gap welding of titanium alloys is a cost-effective and efficient method for joining thick titanium
alloy structures. The technology of narrow-gap welding of titanium alloys with a magnetically-controlled arc enables
a wide range of welding parameter adjustments. This study considers the application of narrow-gap welding with a tungsten
electrode and a controlled magnetic field for producing joints of PT-3V titanium alloy plates with thicknesses of 45 and 64 mm.
The strength of the welded joints of PT-3V titanium alloy produced by narrow-gap welding with a controlled magnetic field
reaches 636 MPa, which is 85 % of the base metal strength, and it is comparable to the properties of welded joints made using
the conventional gas tungsten arc welding technology. Application of the obtained results allowed welding joints of titanium
alloys with variable thicknesses ranging from 45 to 65 mm while maintaining the same number of passes.
Keywords: narrow-gap welding, titanium, titanium alloy, TIG welding, tungsten electrode, controlled magnetic field, heat
input, structure, microstructure, mechanical properties, metallography
Received: 25.02.2025
Received in revised form: 04.04.2025
Accepted: 15.09.2025
References
1. Hori, K., Haneda, M. (1999) Narrow gap arc welding. J. of
JWS, 3, 41?62.
2. Dak, G., Khanna, N., Pandey, C. (2023) Study on narrow gap
welding of martensitic grade P92 and austenitic grade AISI
304L SS steel for ultra-supercritical power plant application.
Archiv. Civ. Mech. Eng., 23(14). DOI: https://doi.org/10.1007/s43452-022-00540-3
3. Luo, Y., Zhang, Z.L., Zhou, C.F. et al. (2017) Effect of narrow
groove MAG welding oscillation parameters on weld formation.
J. Hebei Univ. Sci. Technol., 38(1), 7–12. DOI: https://doi.org/10.7535/hbkd.2017yx01002
4. Akhonin, S.V., Belous, V.Yu., Romanyuk, V.S. et al. (2010)
Narrow-gap welding of up to 110 mm thick high-strength titanium
alloys. The Paton Welding J., 5, 34–37.
5. Jae-Ho Jun, Sung-Ryul Kim, Sang-Myung Cho (2016) A
study on productivity improvement in narrow gap TIG welding.
J. of Welding and Joining, 34(1), 68–74. DOI: https://doi.org/10.5781/JWJ.2016.34.1.68
6. Nguyen, D.H. (2014) Research on droplet transfer and welding
process of oscillation arc narrow gap GMAW: Master’s
Thesis, Harbin Institute of Technology, Harbin, China.
7. Sun, Qing Jie, Hai Feng Hu, Xin Yuan, Ji Cai Feng (2011)
Research status and development trend of narrow-gap TIG
welding. Advanced Materials Research, 308, 1170–1176.
DOI: https://doi.org/10.4028/www.scientific.net/AMR.308-310.1170
8. Dong, Z., Tian, Y., Zhang, L. et al. (2024) Research status
of high efficiency deep penetration welding of medium-thick
plate titanium alloy: A review. Defence Technology, 45, 178–
202. DOI: https://doi.org/10.1016/j.dt.2024.08.004
9. Fang, D.S. (2017) Study on the characteristics of three-wire
indirect arc and its thick-wall narrow gap welding process under
gas protection: Ph.D. Thesis, Dalian University of Technology,
Dalian, China.
10. Belous, V.Yu., Akhonin, S.V. (2011) Formation of narrow-gap
welded joints on titanium using the controlling magnetic field.
The Paton Welding J., 4, 19–22.
11. Shoichi, M., Yukio, M., Koki, T. et al. (2013) Study on the application
for electromagnetic controlled molten pool welding
process in overhead and flat position welding. Sci. Technol.
Weld. Join., 18, 38–44. DOI: https://doi.org/10.1179/1362171812Y.0000000070
12. Ding, L., Qin, B., Ge, K. et al. (2023) Microstructures and
mechanical properties of thick Ti–6Al–3Nb–2Zr–1Mo joint
by magnetron-controlled narrow gap TIG welding. Metals
and Materials Inter., 29(8), 2304–2315. DOI: http://dx.doi.org/10.1007/s12540-022-01367-6
13. Wang, J., Sun, Q., Feng, J. et al. (2017) Characteristics of
welding and arc pressure in TIG narrow gap welding using
novel magnetic arc oscillation. The Inter. J. of Advanced
Manufacturing Technology, 90, 413–420. DOI: https://doi.org/10.1007/s00170-016-9407-5
14. Wan, L., Huang, Y., Lv, S. et al. (2016) Narrow-gap tungsten
inert gas welding of 78-mm-thick Ti–6Al–4V alloy. Materials
Sci. and Technology, 32(15), 1545–1552. DOI: https://doi.org/10.1080/02670836.2015.1131941
15. Fang, N., Guo, E., Huang, R. et al. (2021) Effect of welding
heat input on microstructure and properties of TC4 titanium
alloy ultra-narrow gap welded joint by laser welding with
filler wire. Materials Research Express, 8(1), 016511. DOI:
http://dx.doi.org/10.1088/2053-1591/abd4b3
16. Xinyu Bao Yonglin Ma, Shuqing Xing, Yongzhen Liu, Weiwei
Shi (2022) Effects of pulsed magnetic field melt treatment on
grain refinement of Al–Si–Mg–Cu–Ni alloy direct-chill casting
billet. Metals, 12(7), 1080. DOI: https://doi.org/10.3390/met12071080
17. Akhonin, S.V., Bilous, V.Yu., Selin, R.V. et al. (2023) Narrow-
gap TIG welding of thick steel 20. The Paton Welding J.,
6, 18–23. DOI: https://doi.org/10.37434/tpwj2023.06.03
18. Yujun Hu, Hongjin Zhao, Xuede Yu et al. (2022) Research
progress of magnetic field regulated mechanical property
of solid metal materials. Metals, 12, 1988. DOI: https://doi.org/10.3390/met12111988
Suggested Citation
S.V. Akhonin, V.Yu. Bilous, R.V. Selin, I.K. Petrichenko, L.M. Radchenko, S.B. Rukhansky (2025) Narrow gap welding of PT-3V titanium alloy with a controlled magnetic field.
The Paton Welding J., 09, 3-9.