Print
2025 №09 (06) DOI of Article
10.37434/tpwj2025.09.01
2025 №09 (02)

The Paton Welding Journal 2025 #09
The Paton Welding Journal, 2025, #9, 3-9 pages

Narrow gap welding of PT-3V titanium alloy with a controlled magnetic field

S.V. Akhonin, V.Yu. Bilous, R.V. Selin, I.K. Petrichenko, L.M. Radchenko, S.B. Rukhansky

E.O. Paton Electric Welding Institute of the NASU. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: belousvy@gmail.com

Abstract
Tungsten inert gas (TIG) narrow-gap welding of titanium alloys is a cost-effective and efficient method for joining thick titanium alloy structures. The technology of narrow-gap welding of titanium alloys with a magnetically-controlled arc enables a wide range of welding parameter adjustments. This study considers the application of narrow-gap welding with a tungsten electrode and a controlled magnetic field for producing joints of PT-3V titanium alloy plates with thicknesses of 45 and 64 mm. The strength of the welded joints of PT-3V titanium alloy produced by narrow-gap welding with a controlled magnetic field reaches 636 MPa, which is 85 % of the base metal strength, and it is comparable to the properties of welded joints made using the conventional gas tungsten arc welding technology. Application of the obtained results allowed welding joints of titanium alloys with variable thicknesses ranging from 45 to 65 mm while maintaining the same number of passes.
Keywords: narrow-gap welding, titanium, titanium alloy, TIG welding, tungsten electrode, controlled magnetic field, heat input, structure, microstructure, mechanical properties, metallography

Received: 25.02.2025
Received in revised form: 04.04.2025
Accepted: 15.09.2025

References

1. Hori, K., Haneda, M. (1999) Narrow gap arc welding. J. of JWS, 3, 41?62.
2. Dak, G., Khanna, N., Pandey, C. (2023) Study on narrow gap welding of martensitic grade P92 and austenitic grade AISI 304L SS steel for ultra-supercritical power plant application. Archiv. Civ. Mech. Eng., 23(14). DOI: https://doi.org/10.1007/s43452-022-00540-3
3. Luo, Y., Zhang, Z.L., Zhou, C.F. et al. (2017) Effect of narrow groove MAG welding oscillation parameters on weld formation. J. Hebei Univ. Sci. Technol., 38(1), 7–12. DOI: https://doi.org/10.7535/hbkd.2017yx01002
4. Akhonin, S.V., Belous, V.Yu., Romanyuk, V.S. et al. (2010) Narrow-gap welding of up to 110 mm thick high-strength titanium alloys. The Paton Welding J., 5, 34–37.
5. Jae-Ho Jun, Sung-Ryul Kim, Sang-Myung Cho (2016) A study on productivity improvement in narrow gap TIG welding. J. of Welding and Joining, 34(1), 68–74. DOI: https://doi.org/10.5781/JWJ.2016.34.1.68
6. Nguyen, D.H. (2014) Research on droplet transfer and welding process of oscillation arc narrow gap GMAW: Master’s Thesis, Harbin Institute of Technology, Harbin, China.
7. Sun, Qing Jie, Hai Feng Hu, Xin Yuan, Ji Cai Feng (2011) Research status and development trend of narrow-gap TIG welding. Advanced Materials Research, 308, 1170–1176. DOI: https://doi.org/10.4028/www.scientific.net/AMR.308-310.1170
8. Dong, Z., Tian, Y., Zhang, L. et al. (2024) Research status of high efficiency deep penetration welding of medium-thick plate titanium alloy: A review. Defence Technology, 45, 178– 202. DOI: https://doi.org/10.1016/j.dt.2024.08.004
9. Fang, D.S. (2017) Study on the characteristics of three-wire indirect arc and its thick-wall narrow gap welding process under gas protection: Ph.D. Thesis, Dalian University of Technology, Dalian, China.
10. Belous, V.Yu., Akhonin, S.V. (2011) Formation of narrow-gap welded joints on titanium using the controlling magnetic field. The Paton Welding J., 4, 19–22.
11. Shoichi, M., Yukio, M., Koki, T. et al. (2013) Study on the application for electromagnetic controlled molten pool welding process in overhead and flat position welding. Sci. Technol. Weld. Join., 18, 38–44. DOI: https://doi.org/10.1179/1362171812Y.0000000070
12. Ding, L., Qin, B., Ge, K. et al. (2023) Microstructures and mechanical properties of thick Ti–6Al–3Nb–2Zr–1Mo joint by magnetron-controlled narrow gap TIG welding. Metals and Materials Inter., 29(8), 2304–2315. DOI: http://dx.doi.org/10.1007/s12540-022-01367-6
13. Wang, J., Sun, Q., Feng, J. et al. (2017) Characteristics of welding and arc pressure in TIG narrow gap welding using novel magnetic arc oscillation. The Inter. J. of Advanced Manufacturing Technology, 90, 413–420. DOI: https://doi.org/10.1007/s00170-016-9407-5
14. Wan, L., Huang, Y., Lv, S. et al. (2016) Narrow-gap tungsten inert gas welding of 78-mm-thick Ti–6Al–4V alloy. Materials Sci. and Technology, 32(15), 1545–1552. DOI: https://doi.org/10.1080/02670836.2015.1131941
15. Fang, N., Guo, E., Huang, R. et al. (2021) Effect of welding heat input on microstructure and properties of TC4 titanium alloy ultra-narrow gap welded joint by laser welding with filler wire. Materials Research Express, 8(1), 016511. DOI: http://dx.doi.org/10.1088/2053-1591/abd4b3
16. Xinyu Bao Yonglin Ma, Shuqing Xing, Yongzhen Liu, Weiwei Shi (2022) Effects of pulsed magnetic field melt treatment on grain refinement of Al–Si–Mg–Cu–Ni alloy direct-chill casting billet. Metals, 12(7), 1080. DOI: https://doi.org/10.3390/met12071080
17. Akhonin, S.V., Bilous, V.Yu., Selin, R.V. et al. (2023) Narrow- gap TIG welding of thick steel 20. The Paton Welding J., 6, 18–23. DOI: https://doi.org/10.37434/tpwj2023.06.03
18. Yujun Hu, Hongjin Zhao, Xuede Yu et al. (2022) Research progress of magnetic field regulated mechanical property of solid metal materials. Metals, 12, 1988. DOI: https://doi.org/10.3390/met12111988

Suggested Citation

S.V. Akhonin, V.Yu. Bilous, R.V. Selin, I.K. Petrichenko, L.M. Radchenko, S.B. Rukhansky (2025) Narrow gap welding of PT-3V titanium alloy with a controlled magnetic field. The Paton Welding J., 09, 3-9.