Print
2026 №01 (02) DOI of Article
10.37434/tpwj2026.01.03
2026 №01 (04)

The Paton Welding Journal 2026 #01
The Paton Welding Journal, 2026, #1, 22-26 pages

Investigation of the behaviour of alloying elements during electroslag remelting of high-chromium boron-containing steel

Yu.V. Kostetskyi, Ye.O. Pedchenko, V.P. Petrenko, G.O. Polishko, V.A. Zaitsev, D.I. Trykozenko

E.O. Paton Electric Welding Institute of the NASU. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: y.kostetsky@paton.kiev.ua

Abstract
The paper presents the results of laboratory studies on the behaviour of alloying elements in a high-chromium boron-containing steel during electroslag remelting with silicon-free fluxes. The influence of slag composition and atmospheric oxidation potential on element loss was examined. Protecting the melting space with argon during electroslag remelting allowed significantly reducing boron and other active element losses. Remelting with a silicon-free flux containing 33 % CaF2, 33 % CaO, 33 % Al2O3, and 1 % B2O3, combined with argon protection of the melting space, was shown to stabilize the content of nickel, molybdenum, cobalt, and niobium in the metal. However, this process results in losses of manganese, chromium, silicon, and boron. Adding 1 % boron oxide to the slag reduced boron losses in the metal by half. An unstable electrical mode of remelting was found to increase the loss of elements prone to oxidation. These results can be used to optimize the slag composition and the remelting modes to minimize the loss of alloying elements in boron-containing steels during electroslag remelting.
Keywords: electroslag remelting, boron-containing steel, silicon-free flux, oxidation of impurities, chemical composition of metal

Received: 15.09.2025
Received in revised form: 14.10.2025
Accepted: 16.12.2025

References

1. Sharma, M., Ortlepp, I., Bleck, W. (2019) Boron in heat-treatable steels: A review. Steel Research Inter., 90(11), 1900133. DOI: https://doi.org/10.1002/srin.201900133
2. Dudova, N. (2022) 9–12 % Cr heat-resistant martensitic steels with increased boron and decreased nitrogen contents. Metals, 12(7), 1119. DOI: https://doi.org/10.3390/met12071119
3. Abe, F. (2011) Effect of boron on microstructure and creep strength of advanced ferritic power plant steels. Procedia Eng., 10, 94–99. DOI: https://doi.org/10.1016/j.proeng.2011.04.018
4. Zhang, D., Wang, X., Li, Y. (2023) Influence of boron segregation on the hot ductility of T23 steel CGHAZ. Sci. and Technol. of Welding and Joining, 28(9), 875–884. DOI: https://doi.org/10.1080/13621718.2023.2245588
5. Lutyi, I.Yu., Latash, Yu.V. (1982) Electroslag melting and refining of metal. Ed. by B.E. Paton. Kyiv, Naukova Dumka [in Russian].
6. Medovar, B.I., Tsykulenko, A.K., Shevtsov, V.L. et al. (1986) Metallurgy of electroslag process. Ed. by B.E. Paton. Kyiv, Naukova Dumka [in Russian].
7. Li, S.J., Cheng, G.G., Yang, L. et al. (2017) Thermodynamic model to design the equilibrium slag compositions during electroslag remelting process: Description and verification. ISIJ Inter., 57, 713–722. DOI: https://doi.org/10.2355/isijinternational.ISIJINT-2016-655
8. Duan, S.C., Park, J.H. (2022) Comparison of oxidation behavior of various reactive elements in alloys during electroslag remelting (ESR) process: An overview. ISIJ Inter., 62(8), 1561–1572. DOI: https://doi.org/10.2355/isijinternational.ISIJINT-2016-655
9. Medina, S.F., Cores, A. (1993) Thermodynamic aspects in the manufacturing of microalloyed steels by the electroslag remelting process. ISIJ Inter., 33(12), 1244–1251. DOI: https://doi.org/10.2355/isijinternational.33.1244
10. Mitchell, A. (1981) The chemistry of ESR slags. Canadian Metallurgical Quarterly, 20(1), 101–112. DOI: https://doi.org/10.1179/cmq.1981.20.1.101
11. Peng, L., Jiang, Z., Geng, X. (2019) Design of ESR slag for remelting 9CrMoCoB steel under simple protective Ar gas. Metals, 9, 1300, 1–13. DOI: https://doi.org/10.3390/met9121300
12. Duan, S.C., Lee, M.J., Kim, D.S., Park, J.H. (2022) Oxidation behavior of boron in 9CrMoCoB steel by CaF2–CaO–Al2O3– SiO2–B2O3 electroslag remelting (ESR) type slag. J. of Materials Research and Technology, 17, 574–585. DOI: https://doi.org/10.1016/j.jmrt.2022.01.033
13. Kuskov, Yu.M., Ryabtsev, I.A., Kuzmenko, O.G., Lentyugov, I.P. (2020) Electroslag technologies of surfacing and recycling of metal and metal-containing waste: Monograph. Ed. by I.A. Ryabtsev. Kyiv, Interservice [in Russian].

Suggested Citation

Yu.V. Kostetskyi, Ye.O. Pedchenko, V.P. Petrenko, G.O. Polishko, V.A. Zaitsev, D.I. Trykozenko (2026) Investigation of the behaviour of alloying elements during electroslag remelting of high-chromium boron-containing steel. The Paton Welding J., 01, 22-26.