The Paton Welding Journal, 2012, #8, 11-16 pages
MATHEMATICAL FORMULATION OF CARBON EQUIVALENT AS A CRITERION FOR EVALUATION OF STEEL WELDABILITY
V.A. KOSTIN
E.O. Paton Electric Welding Institute, NASU, Kiev, Ukraine
Abstract
A new criterion is proposed for cold cracking susceptibility of HAZ metal of joints on hardenable steel, based on allowing for the kinetics of austenite decomposition and experimental determination of the incubation period of the start of martensite transformation. It is shown that this criterion can be mathematically reduced to the traditional parameter for assessment of such a weldability of hardenable steels - carbon equivalent. A mathematic dependence of the new criterion on value of carbon equivalent is proposed, which was verified experimentally.
Keywords: modelling, carbon equivalent, weldability, criteria, cold cracks, diagram of austenite decomposition, martеnsite, technological tests
Received: 08.05.12
Published: 28.08.12
References
1. ISO 581:1980: Weldability. Definition. General information.
2. BS 499-1:2009: Welding terms and symbols: Glossary for welding, brazing and thermal cutting.
3. DIN 8528: Pt 1: Weldability of metallic materials, concepts.
4. GOST 29273-92 RF (ISO 581-80): Weldability. Definition.
5. Hrivnak, I. (1984) Weldability of steels. Moscow: Mashinostroenie.
6. Yushchenko, K.A., Derlomenko, V.V. (2007) Weldability of materials. Pt 1. IIW Doc. VI-842-07.
7. Yushchenko, K.A., Derlomenko, V.V. (2005) Analysis of modern views on weldability. The Paton Welding J., 1, 5-9.
8. Olson, G.B., Cohen, M. (1976) A general mechanism of martensitic nucleation. Pt I-III. Metallurg. Transact. A, 7, 1897-1923.
9. (1967) The IIW formula for carbon equivalent. Techn. Rep. IIW Doc. IX-535-67.
10. Ito, I., Bessyo, K. (1968) Cracking parameter of high strength steels related to HAZ cracking. J. JWES, 9(37), 983-991.
11. Yurioka, N., Oshita, S., Tamehiro, P. (1981) Pipe-line welding in the 80s. In: Proc. of AWRA Symp. (March, 1981).
12. Lundin, C.D., Gill, T.P., Qiao, C.Y. (1991) Carbon equivalence and weldability of microalloyed steels. SSC-357, AD-A234-850.
13. Scheil, E. (1935) Nucleation period of austenite transformation. Arch. Eisenhuettenwesen, 12, 565-567.
14. Kirkaldy, J.S., Thomson, B.A., Baganies, E.A. (1978) Hardenability concept with application to steel. Ed. by D.V. Doane, J.S. Kirkaldy. Warrendale: AIME.
15. Seyffarth, P. (1982) Schweiss-ZTU-Schaubilder. Berlin: Technik.
16. Tadashi, K., Yuji, H. (2007) Carbon equivalent to assess hardenability of steel and prediction of HAZ hardness distribution. Nippon Steel Techn. Rep., 95, 53-61.
17. Yurioka, N., Okumura, M., Kasuya, T. et al. (1987) Prediction of HAZ hardness of ferritic steels. Metal Constr., 19, 217-223.
18. Popova, L.E., Popov, A.A. (1991) Diagrams of austenite transformation in steels and beta-solution in titanium alloys: Refer. Book of heat-treater. Moscow: Metallurgiya.
19. (1974) Reference book of welder. Ed. by V.V. Stepanov. Moscow: Mashgiz.
20. Xavier, C.R., Delgado Junio H.G., de Castro, J.A. (2011) Numerical evaluation of the weldability of the low alloy ferritic steels T/P23 and T/P24. Mat. Res., 14(1), 73-90.
Suggested Citation
V.A. KOSTIN (2012) MATHEMATICAL FORMULATION OF CARBON EQUIVALENT AS A CRITERION FOR EVALUATION OF STEEL WELDABILITY.
The Paton Welding J., 08, 11-16.