Print

2012 №12 (03) 2012 №12 (05)

The Paton Welding Journal 2012 #12
The Paton Welding Journal, 2012, #12, 18-25 pages  

FORMATION OF SPINEL IN MELT OF THE MgO-Al2O3-SiO2-CaF2 SYSTEM AGGLOMERATED WELDING FLUX AND ITS EFFECT ON VISCOSITY OF SLAG

I.A. Goncharov1, V.E. Sokolsky2, A.O. Davidenko2, V.I. Galinich1 and D.D. Mishchenko1


1E.O. Paton Electric Welding Institute, NASU, Kiev, Ukraine
2Taras Shevchenko National University, Kiev, Ukraine
 
 
Abstract
X-ray examinations of structure of agglomerated flux of the MgO-Al2O3-SiO2-CaF2 system in solid and molten states evidence that in a temperature range above 1200 °C the Al2MgO4 hard spinel phase with a melting temperature of 2105 °C forms in the slag melt. It determines physical-chemical properties of the melt and, in particular, the smooth character of viscosity changes in a temperature range of 1180-1540 °C. By manipulating proportions and concentrations of spinel-forming components Al2O3 and MgO, it is possible to achieve the optimal values of the temperature dependence of viscosity of the slag melt and, on this base, develop welding fluxes with predictable technological properties.
 
 
Keywords: welding, agglomerated flux, structure of slag melts, viscosity, diffraction examinations, spinel
 
 
Received:                ??.??.??
Published:               28.12.12
 
 
References
 
1. Podgaetsky, V.V., Lyuborets, I.I. (1984) Welding fluxes. Kiev: Tekhnika.
2. Pokhodnya, I.K., Yavdoshchin, I.R., Shvachko, V.I. et al. (2004) Metallurgy of arc welding. Interaction of gases with metals. Ed. by I.K. Pokhodnya. Kiev: Naukova Dumka.
3. Olson, D.L. (1983) The investigation of the influence of welding flux on the pyrometallurgical, physical and mechanical behavior of weld metal. In: Final report of Center for welding research Colorado school of mines Golden Colorado.
4. Eagar, T.W. (1991) Thermochemistry of joining. In: Proc. of Elliot Symp. on Chemical Process Metallurgy.
5. Herasymenko, P., Speigth, G.E. (1950) Ionic theory of slag-metal equilibrium. J. Iron and Steel Inst., 166, 169-183, 289-303.
6. Tyomkin, M.I. (1946) Mixtures of molten salts as ionic solutions. Zhurnal Fizich. Khimii, Issue 1, 105-110.
7. Kozheurov, V.A. (1955) Thermodynamics of metallurgical slags. Sverdlovsk: Metallurgizdat.
8. Esin, O.A. (1961) About the nature of molten silicates. Tr. Ural. Polytechn. In-ta, Issue 122, 29-39.
9. Sokolskii, V.E., Roik, A.S., Davidenko, A.O. et al. (2012) X-ray diffraction and sem/edx studies on technological evolution of the oxide-fluoride ceramic flux for submerged arc-surfacing. J. Min. Metall. B, 48, 101-113.
10. Duchenko, A.N., Mishchenko, D.D., Goncharov, I.A. et al. (2011) Study of the process of melting and solidification of fluxes of the Al2O3-MgO-SiO2-CaF2 slag system. In: Proc. of 13th Rus. Conf. on Structure and Properties of Metallic and Slag Melts. Vol.3: Experimental investigation of slag melts, metal-slag interaction (Ekaterinburg, 2011), 136-139.
11. Goncharov, I.A., Galinich, V.I., Mishchenko, D.D. et al. (2011) Prediction of thermodynamic properties of melts of MgO-Al2O3-SiO2-CaF2 system. The Paton Welding J., 10, 2-4.
12. Shpak, A.P., Sokolsky, V.E., Kazimirov, V.P. et al. (2003) Structural peculiarities of oxide system melts. Kiev: Akademperiodika.
13. Berezhnoj, A.S. (1970) Multi-component oxide systems. Kiev: Naukova Dumka.
14. Sokolsky, V.E., Roik, A.S., Davidenko, A.O. et al. (2010) On phase transformations in agglomerated flux of salt-oxide slag system at heating. The Paton Welding J., 12, 9-14.
15. Pashchenko, A.A., Myasnikov, A.A., Myasnikova, E.A. et al. (1986) Physical chemistry of silicates: Manual. Ed. by A.A. Pashchenko. Moscow: Vysshaya Shkola.