2013 №07 (02) 2013 №07 (04)

The Paton Welding Journal 2013 #07
TPWJ, 2013, #7, 13-23 pages

Journal                    The Paton Welding Journal
Publisher                 International Association «Welding»
ISSN                       0957-798X (print)
Issue                       № 7, 2013 (July)
Pages                       13-23

E.O. Paton Electric Welding Institute, NASU. 11 Bozhenko Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua

Self-consistent model of non-stationary processes of transfer of energy, pulse, mass and charge in the column and anode region of electric arc with refractory cathode was the basis to perform a detailed numerical analysis of dynamic characteristics for atmospheric-pressure argon arc with tungsten cathode and water copper-cooled anode at pulsed variation of electric current. An essential difference in dynamic behaviour of local and integral characteristics of arc plasma is shown, as well as the specifics of dynamics of thermal and electromagnetic processes running in the pulsed arc column and anode region. It is established that the velocities of transient processes in arc plasma at the pulse leading and trailing edges can also differ significantly. 28 Ref., 14 Figures.

Keywords: pulsed electric arc, refractory cathode, water-cooled anode, arc column, anode region, current pulse, dynamic characteristics, mathematical modelling

Received:                18.06.13
Published:                28.07.13

1. Hsu, K.C., Etemadi, K., Pfender, E. (1983) Study of the free-burning high-intensity argon arc. J. Appl. Phys., 54(3), 1293-1301.
2. Hsu, K., Pfender, E. (1983) Two-temperature modeling of the free-burning high-intensity arc. Ibid., 54(8), 4359-4366.
3. Engelsht, V.S., Gurovich, V.Ts., Desyatkov, G.A. et al. (1990) Low-temperature plasma. Vol. 1: Theory of electric arc column. Novosibirsk: Nauka.
4. Zhu, P., Lowke, J.J., Morrow, R. et al. (1995) Prediction of anode temperatures of free burning arcs. J. Phys. D: Appl. Phys., 28, 1369-1376.
5. Jenista, J., Heberlein, J.V.R., Pfender, E. (1997) Numerical model of the anode region of high-current electric arcs. IEEE Transact. on Plasma Sci., 25(5), 883-890.
6. Lowke, J.J., Morrow, R., Haidar, J. (1997) A simplified unified theory of arcs and their electrodes. J. Phys. D: Appl. Phys., 30, 2033-2042.
7. Haidar, J. (1999) Non-equilibrium modeling of transferred arcs. Ibid., 32, 263-272.
8. Sansonnets, L., Haidar, J., Lowke, J.J. (2000) Prediction of properties of free burning arcs including effects of ambipolar diffusion. Ibid., 33, 148-157.
9. Nishiyama, H., Sawada, T., Takana, H. et al. (2006) Computational simulation of arc melting process with complex interactions. ISIJ Int., 46(5), 705-711.
10. Li, H.-P., Benilov, M.S. (2007) Effect of a near-cathode sheath on heat transfer in high-pressure arc plasmas. J. Phys. D: Appl. Phys., 40, 2010-2017.
11. Tanaka, M., Yamamoto, K., Tashiro, S. et al. (2008) Metal vapour behaviour in gas tungsten arc thermal plasma during welding. Welding in the World, 52(11/12), 82-88.
12. Kim, W.-H., Na, S.-J. (1998) Heat and fluid flow in pulsed current GTA weld pool. Int. J. Heat and Mass Transfer, 41(Issue 21), 3213-3227.
13. Wu, C.S., Zheng, W., Wu, L. (1999) Modeling the transient behaviour of pulsed current tungsten-inert-gas weld pools. Modelling Simul. Mater. Sci. Eng., 7(1), 15-23.
14. Traidia, A., Roger, F., Guyot, E. (2012) Optimal parameters for pulsed gas tungsten arc welding in partially and fully penetrated weld pools. Int. J. Thermal Sci., 49(Issue 7), 1197-1208.
15. Kolasa, A., Matsunawa, A., Arata, Y. (1986) Dynamic characteristics of variable frequency pulsed TIG arc. Transact. of JWRI, 15(2), 173-177.
16. Traidia, A., Roger, F. (2011) Numerical and experimental study of arc and weld pool behaviour for pulsed current GTA welding. Int. J. Heat and Mass Transfer, 54(Issues 9/10), 2163-2179.
17. Krivtsun, I.V., Demchenko, V.F., Krikent, I.V. (2010) Model of the processes of heat, mass and charge transfer in the anode region and column of the welding arc with refractory cathode. The Paton Welding J., 6, 2-9.
18. Mojzhes, B.Ya., Nemchinsky, V.A. (1972) To theory of high pressure arc on refractory cathode. Zhurnal Tekhnich. Fiziki, 42(5), 1001-1009.
19. Mojzhes, B.Ya., Nemchinsky, V.A. (1973) To theory of high pressure arc on refractory cathode. Pt 2. Ibid., 43(11), 2309-2317.
20. Zhukov, M.F., Kozlov, N.P., Pustogarov, A.V. et al. (1982) Near-electrode processes in arc discharges. Novosibirsk: Nauka.
21. Wendelstorf, J., Simon, G., Decker, I. et al. (1997) Investigation of cathode spot behaviour of atmospheric argon arcs by mathematical modeling. In: Proc. of 12th Int. Conf. on Gas Discharges and Their Applications (Germany, Greifswald, 1997), Vol.1, 62-65.
22. Krikent, I.V., Krivtsun, I.V., Demchenko, V.F. (2012) Modelling of processes of heat-, mass- and electric transfer in column and anode region of arc with refractory cathode. The Paton Welding J., 3, 2-6.
23. Boulos, M.I., Fauchais, P., Pfender, E. (1997) Thermal plasmas: Fundamentals and applications. Vol. 1. N.-Y.; London: Plenum Press.
24. Landau, L.D., Lifshits, E.M. (1982) Theoretical physics. Vol. 8: Electrodynamics of continua. Moscow: Nauka.
25. Lyashko, I.I., Demchenko, V.F., Vakulenko, S.A. (1981) Version of the method of equation splitting of viscous non-compressible fluid dynamics on Lagrangian-Eulerian networks. Doklady AN UkrSSR, Series A, 43-47.
26. Demchenko, V.F., Lesnoj, A.B. (2000) Lagrangian-Eulerian method of numerical solution of convective diffusion multivariate problems. Dopovidi NANU, 11, 71-75.
27. Trofimov, N.M., Sinitsky, R.V. (1967) Dynamic characteristics of pulsed arc in argon-shielded welding. Svarochn. Proizvodstvo, 8, 17-19.
28. Almeida, R.M.S., Benilov, M.S., Naidis, G.V. (2000) Simulation of the layer of non-equilibrium ionization in a high-pressure argon plasma with multiply-charged ions. J. Phys. D: Appl. Phys., 33(Issue8), 960-967.