2015 №11 (03) DOI of Article
2015 №11 (05)

The Paton Welding Journal 2015 #11
TPWJ, 2015, #11, 31-41 pages
Main tendencies in development of plasma-arc welding of aluminium alloys
Journal                    The Paton Welding Journal
Publisher                 International Association «Welding»
ISSN                      0957-798X (print)
Issue                       № 11, 2015 (November)
Pages                      31-41
A.A. Grinyuk2, 3, V.N. Korzhik1, 2, V.E. Shevchenko1, 2, A.A. Babich2, S.I. Peleshenko4, V.G. Chajka2, A.F. Tishchenko2 And G.V. Kovbasenko2
1Chinese-Ukrainian E.O. Paton Welding Institute (Guangdong General Research Institute of Industrial Technology)(Guangzhou Research Institute of Non-Ferrous Metals, PRC)
2E.O. Paton Electric Welding Institute, NASU 11 Bozhenko Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua
3NTUU «Kiev Polytechnic Institute» 6/2 Dashavskaya Str., 03056, Kiev, Ukraine. E-mail: andrey_grinyuk@ukr.net
4South China University of Technology 510641, Guangzhou, PRC. E-mail: sviatoslav@qq.com
Publications, describing the characteristic technologies of aluminium alloy welding by an arc constricted by high-velocity inert gas flow were analyzed. It is shown that plasma-arc welding (PAW) is further development of the process of nonconsumable-electrode inert-gas welding. It is established that during development of PAW of aluminium alloys, there was a transition from alternating sinusoidal current to reverse polarity direct current, and furtheron to variable polarity asymmetrical current with rectangular current waveform. A more promising direction of improvement of PAW equipment is transition from specialized power sources to modular design of PAW system, based on power sources applied for nonconsumable electrode welding and plasma modules. Further path of improvement of the processes of aluminium alloy PAW is combined or hybrid application of several heat sources, including the constricted arc and consumable-electrode arc. In the authors' opinion, hybrid consumable-electrode PAW with hollow anode and axial wire feed in the most promising variant. 41 Ref., 17 Figures.
Keywords: plasma-arc welding, aluminium alloys, alternating sinusoidal current, variable polarity asymmetrical current, hybrid plasma-arc welding, consumable electrode
Received:                21.07.15
Published:               21.12.15
  1. Gage, R.M. Arc torch and process. Pat. 2806124 US. Publ. 10.09.1957.
  2. Lathi, K., Jenstroem, P. (1999) Plasma welding aluminium. Svetsaren, 3, 26-28.
  3. Dzelnitzki, D. (2000) Aluplasmaschweissen: Gleich- oder Wechselstrom? Technica (Suisse), 49(10), 44-53.
  4. Dudko, D.A., Lakiza, S.P., Vinogradsky, F.M. et al. (1966) Alternating current constricted arc welding. Avtomatich. Svarka, 7, 47-49.
  5. Dudko, D.A., Kornienko, A.N. (1967) Thermal effectiveness of alternating current plasma arc welding process. Ibid., 11, 27-30.
  6. Rubinchik, Yu.L. (1974) Mechanized welding of hull structures from aluminium alloys. Leningrad: Sudostroenie.
  7. Cooper, G., Palermo, J., Browning, J.A. (1965) Recent developments in plasma welding. Welding J., 44(4), 268-276.
  8. Bykhovsky, D.G., Belyaev, V.M. (1971) Specifics of weld formation in plasma (constricted) arc welding of reverse polarity. Svarochn. Proizvodstvo, 9, 25-26.
  9. Bykhovsky, D.G., Belyaev, V.M. (1971) Power characteristics of plasma arc at reverse polarity. Avtomatich. Svarka, 5, 27-30.
  10. Nekrasov, S.A., Salkin, G.P., Bychkov, A.S. et al. (1976) Application of plasma arc welding in production of cryogenic equipment from aluminium alloys. Svarochn. Proizvodstvo, 4, 16-17.
  11. Gorbach, V.D., Bochkarev, V.P., Nazaruk, V.K. (2009) Technology of plasma welding of aluminium alloys. Mir Svarki, 3, 22-25.
  12. Kiselev, G.S. (2010) Development of plasma welding technology of AMg5 aluminium alloy with pulsed feed of plasma-forming gases: Syn. of Thesis for Cand. of Techn. Sci. Degree. Tula.
  13. Tatarinov, E.A., Kiselev, G.S. (2009) To calculation of volt-ampere characteristic of plasma welding with pulsed feed of argon or helium. Svarka i Diagnostika, 5, 11-14.
  14. Bychkovsky, S.L., Novikov, O.M., Radko, E.P. et al. Method of plasma arc welding. Pat. 2351445 Russia. Appl. 2007121870/02, 14.06.2007.
  15. Ruge, J., Lutze, P., Norenberg, K. (1989) Eignung von Aluminiumdruckguss zum Plasma- und Elektronenstrahlschweissen - Entgasungmechanismen und Nahtgute. Schweissen und Schneiden, 43(7), 327-332.
  16. Schweinkhart, G. Plasma welding torch. Pat. 6215089B1 US. Pat. 10.04.2001.
  17. Paton, B.E., Dudko, D.A., Gvozdetsky, V.S. et al. Method of plasma welding. USSR Author's cert. 221477. Int. Cl. B 23K9/16. Appl. 1164345/25-27, 17.06.67.
  18. Cert. 73735584 of VPPA trade mark registration. http://www.tmfile.com/mark/?q=737355845. Latest appeal 16.07.2015.
  19. Micheli, J., Pilcher, C. (2000) Advanced variable polarity plasma arc welding. The Fabricator, November.
  20. Nunes, A.C., Bayless, O.E., Jones, C.S. (1983) The variable polarity plasma arc welding process: Its application to the Space Shuttle External Tank: 1st report, June. Marshall Space Flight Center.
  21. Clower, F.R. (1980) Welding of the external tank of the Space Shuttle. Welding J., 54(8), 17-26.
  22. Tomsis, M., Barhorst, S. (1984) Keyhole plasma arc welding of aluminium with variable polarity power. Ibid., 63(3), 25-32.
  23. (1998) Lockheed Martin Michoud Space Systems. Weld. Des. and Fabr., 71(11), 32.
  24. Brik, E.Yu. (1989) Alternating current plasma arc welding of aluminium alloys. In: Abstr. of 1st Int. Conf. of Junior Sci. in Welding and Related Technologies (Kiev, 16-20 May 1989), 91-92.
  25. Zaparovany, A.G., Ignatchenko, G.N., Yarinich, L.M. et al. (1989) Power supply of pilot arc for variable polarity current plasma welding of aluminium. Avtomatich. Svarka, 9, 73-74.
  26. Labur, T.M., Grinyuk, A.A., Poklyatsky, A.G. (2006) Mechanical properties of plasma welded joints on aluminium-lithium alloys. The Paton Welding J., 6, 32-34.
  27. Labur, T.M., Grinyuk, A.A., Taranova, T.G. et al. (2007) Features of micromechanism of fracture in joints of aluminium-lithium alloys produced by plasma welding. Ibid., 9, 11-16.
  28. Krivtsun, I.V., Shelyagin, V.D., Khaskin, V.Yu. et al. (2007) Hybrid laser-plasma welding of aluminium alloys. Ibid., 5, 36-40.
  29. Ternovoj, E.G., Shulym, V.F., Khaskin, V.Yu. et al. (2007) Properties and structure of hybrid laser-plasma welded joints in aluminium alloys. Ibid., 11, 10-15.
  30. Wesling, V., Schraem, A., Bock, A. et al. (2004) Plasmapulververbindungsschweissen von Aluminumblechen. Praktiker, 10, 288-294.
  31. (2005) Untersuchung der metallurgischen Grundlagen zum Plasma-Pulver-Verbindungsschweissen duenner Aluminiumbleche. Schlussbericht fuer den Zeitraum: 1.6.2003 bis 31.5.2005. AiF Vorhaben 13.770 B/4. Technische Universitaet Ilmenau.
  32. Zhang, Y.M., Zhang, S.B. (1998) Double side arc welding increases weld joint penetration. Welding J., 6, 57-61.
  33. Moulton, J.A., Weckman, D.C. (2010) Double side arc welding of 5182-O aluminum sheet for tailored welded blank applications. Ibid., 1, 11-23.
  34. Method of plasma-MIG welding. Pat. 3809824 U.S. Pat. 24.06.75. U.S. Philips Corporation.
  35. Matthes, K.-J., Kusch, M. (2000) Plasma-MIG-Schweissen. Praktiker, 5, 182-188.
  36. Shchitsyn, Yu.D., Tytkin, Yu.M. (1986) Consumable electrode plasma welding of aluminium alloys. Svarochn. Proizvodstvo, 5, 1-2.
  37. Shchitsyn, Yu.D., Shchitsyn, V.Yu., Herold, H. et al. (2003) Plasma welding of aluminium alloys. Ibid., 5, 36-42. https://doi.org/10.1533/wint.2003.3213
  38. Makarenko, N.A., Nevidomsky, V.A. (2003) Thermal cycles in plasma-MIG surfacing. The Paton Welding J., 1, 43-45.
  39. Yan, B., Hong-Ming, G., Ling, Q. (2010) Droplet transition for plasma-MIG welding on aluminium alloys. Transact. of Nonferrous Met. Soc. China, 20, 2234-2239. https://doi.org/10.1016/S1003-6326(10)60634-6
  40. Tiago Vieira da Cuhna, Jair Carlos Dutra (2007) Processo plasma-MIG contribuicao do arco plasma na capacidade de fusao do arame. Soldagem Insp. Sao Paulo, 12(2), 89-96.
  41. (2007) Hybrid welding: An alternative to SAW. Welding J., 10, 42-45.