Print

2021 №09 (06) DOI of Article
10.37434/tpwj2021.09.07
2021 №09 (08)

The Paton Welding Journal 2021 #09
The Paton Welding Journal, 2021, #9, 44-48 pages

Chemical equilibrium in Fe–O–H system at high temperatures

M.M. Gasik1 and M.I. Gasik2


1Aalto University 00076, Aalto, Espoo, Finland. E-mail: michael.gasik@aalto.fi
2National Metallurgical Academy of Ukraine 4 Gagarin Prosp., 49000, Dnipro, Ukraine

Abstract
The issue of thermodynamic equilibrium in Fe–O–H system at the temperature of steel-making processes (1600 °C) was considered. The historical data array, features of experiments on obtaining them and their drawbacks were analyzed. A new more correct calculation of hydrogen and oxygen concentration in liquid iron and in the gas phase was performed. New coefficients of activity were calculated, proceeding from precise thermodynamic principles, unlike the earlier used artificial models based on interaction parameters. 19 Ref., 6 Figures.
Keywords: thermodynamics; iron, hydrogen; oxygen; solutions; activity; equilibrium

Received 26.04.2021

References

1. Filippov, S.I. (1967) Theory of metallurgical processes. Moscow, Metallurgiya [in Russian].
2. Velichko, A.G. (2005) Out-of-furnace steel treatment. Dnepropetrovsk, Sistemnye Tekhnologii [in Russian].
3. Okhotsky, V.B., Kostyolov, O.L., Simonov, V.K. (1997) Theory of metallurgical processes. Kyiv, IZMN [in Ukrainian].
4. Knyuppel, G. (1973) Deoxidation and vacuum treatment of steel. Moscow, Metallurgiya [in Russian].
5. Vacher, H.C. (1933) The system liquid iron-carbon oxides. US Bureau of Standards J. Res., 11, 541-551. https://doi.org/10.6028/jres.011.036
6. Vacher, H.C., Hamilton, E.H. (1931) Carbon-oxygen equilibrium in liquid iron. Transact. AIME, 95, 124-140.
7. Kozlovsky, A.I., Medovar, B.I., Projdak, Yu.S. et al. (1999) Application of methods of special electrometallurgy and outoffurnace treatment in production of wheel steel. Problemy Spets. Elektrometallurgii, 2, 31-38 [in Russian].
8. Sakao, H., Sano, K. (1960) Equilibrium between dissolved oxygen in liquid iron and H2-H2O gas mixtures. Transact. JIM, 1, 38-42. https://doi.org/10.2320/matertrans1960.1.38
9. Schenck, H., Wünsch, H. (1961) Über die Gleichgewichtslöslichkeit des Wasserstoffs im flüssigen reinen Nickel und Eisen und die Beeinflussung im Eisen durch Sauerstoff. Arch. Eisenhüttenw., 32(11), 779-790. https://doi.org/10.1002/srin.196103272
10. Gasik, M.I., Khitrik, S.I. (1965) Interaction of liquid iron with vapor-hydrogen mixture. Metallurgiya i Koksokhimiya, 3, 5-16 [in Russian].
11. Ban-ya, S., Fuwa, T., Ono, K. (1967) Solubility of hydrogen in liquid iron alloys. Tetsu-to-Hagane, 53, 13-28. https://doi.org/10.2355/tetsutohagane1955.53.2_101
12. Kubaschewski, O., Alcock, C.B. (1979) Metallurgical thermochemistry. 5th Ed. Pergamon Press, Oxford.
13. Sanbongi, K. (1981) Thermodynamics of ironmaking and steelmaking processes. Transact. JIM, 22, 663-676. https://doi.org/10.2320/matertrans1960.22.663
14. Lupis, C.H.P. (1983) Chemical thermodynamics of materials. North-Holland, NY.
15. Gasik, M.M., Gasik, M.I. (1985) Thermodynamic investigation of hydrogen-oxygen equilibrium in liquid iron. Izv. AN SSSR. Metally, 3, 22-30 [in Russian].
16. Gasik, M. (2013) Handbook of Ferroalloys: Theory and Technology, Elsevier. Butterworth-Heinemann, Oxford, UK.
17. Gasik, M.M., Gasik, M.I. (2020) Chemical potentials and activities in metallurgical processes. Suchasna Elektrometalurhiya, 4, 39-43 [in Ukrainian]. https://doi.org/10.37434/sem2020.04.07
18. Hillert, M. (1998) Phase equilibria, phase diagrams and phase transformations: Their thermodynamic basis. Cambridge Univ. Press, Cambridge, UK.
19. Schuhman, R.Jr. (1955) Application of Gibbs-Duhem equations to ternary systems. Acta Metall., 3, 219-226. https://doi.org/10.1016/0001-6160(55)90055-9