Print

2010 №08 (10) 2010 №08 (02)

The Paton Welding Journal 2010 #08
TPWJ, 2010, #8, 2-11 pages
 
SUBSTANTIATION OF THE SYSTEM OF DEOXIDATION AND MICROALLOYING OF DEPOSITED METAL WITH ELECTRODES FOR WELDING AND REPAIR OF BRIDGE AND TRANSPORT STRUCTURES


Journal                    The Paton Welding Journal
Publisher                 International Association «Welding»
ISSN                       0957-798X (print)
Issue                       № 8, 2010 (August)
Pages                      2-11
 
 
Authors
I.K. POKHODNYA, A.E. MARCHENKO, I.R. YAVDOSHCHIN, N.V. SKORINA and O.I. FOLBORT

E.O. Paton Electric Welding Institute, NASU, Kiev, Ukraine
 
 
Abstract
The paper provides substantiation of the system of deoxidation and microalloying of weld metal produced with electrodes that are designed for welding and repair of bridge and transport structures. The main characteristics of the electrodes developed by using this system are described.
 
 
Keywords: arc welding, structural low-alloy steels, covered electrodes, welding and repair of structures, microalloying system
 
 
Received:                ??.??.??
Published:               28.08.10
 
 
References
1. (1998) On approval of the Program for establishing and functioning of the national network of international transport passageways in Ukraine: Resolution of the Cabinet of Ministers of Ukraine of 20 March 1998.
2. Lyakishev, N.P. (1998) Structural and some functional materials. Present and future. In: Current materials science of the 21st century. Kiev: Naukova Dumka.
3. Lyakishev, N.P. (2000) Natural gas-metal-pipes. Problemy Sovremen. Materialovedeniya, 2, 89-94.
4. Zhiznyakov, S.N., Konopatov, V.S., Lyalin, K.V. (1988) Causes of formations of defects in welded joints on metal structures of oxygen-converter workshop at the Magnitogorsk Metallurgical Plant. In: Erecting and special building works. Fabrication of metallic and erection-building structures Series, 11, 1-5.
5. Mikhoduj, L.I., Kirian, V.I., Poznyakov, V.D. et al. (2003) Sparselly-alloyed high-strength steels for welded structures. The Paton Welding J., 5, 34-37.
6. Kovtunenko, V.A., Gerasimenko, A.M., Godulyak, A.A. (2006) Selection of steel for critical building welded structures. Ibid., 11, 27-31.
7. STO-GK Transstroj-005-2007: Steel structures of bridges. Technology of erection welding. Moscow.
8. Grabin, V.F., Denisenko, A.V. (1978) Physical metallurgy of welding of low- and middle-alloy steels. Kiev: Naukova Dumka.
9. Cochane, R.C. (1982) Weld metal microstructures: a stateof-the-art rev. IIW Doc. IX-1248-82.
10. Levin, E., Hill, D.C. (1977) Structure-property relationships in low C weld metal. Met. Transact. A, 8(9), 1453-1463.
11. Choi, C.L., Hill, D.C. (1978) A study of microstructural progression in as-deposited weld metal. Welding J., 8, 232-236.
12. Ricks, R.A., Howell, P.A., Darrite, G.S. (1982) The nature an acicular ferrite in HSLA weld metals. J. Mater. Sci., 17, 732-740.
13. Evans, G.M. (1980) Effect of manganese on the microstructure and properties of all-weld metal deposits. Welding J., 59(3), 67-75.
14. Evans, G.M. (1981) Factors affecting the microstructure and properties of C-Mn all weld metal deposits. IIW Doc. II-957-81.
15. Abson, D.J., Evans, G.M. (1989) A study of the manganeseoxygen system in low hydrogen MMA all-weld metal deposits. IIW Doc. IIA-770-89.
16. Evans, G.M. (1986) The effect of silicon on the microstructure and the properties of C-Mn all-weld metal deposits. Oerlikon Schgweissmitteilungen, 44(110), 19-33.
17. Evans, G.M. (1991) The effect of titanium on the microstructure and properties of C-Mn all-weld metal deposits. IIW Doc. II-A-827-91.
18. Sakaki, H. (1960) Effect of alloying elements on notch toughness of basic weld metals. Rep. on effect of aluminium and titanium. J. JWS, 29(7), 539-544.
19. Nakano, S., Shiga, A., Tsuboi, J. (1975) Optimising the titanium effect on weld metal toughness. IIW Doc. XII-B-182-75.
20. Wolsh, R.A., Ramachandran, S. (1963) Equilibrium in the Fe-Mn-Si-O system. Transact. of Metallurg. Soc. Of AJME, 227(3), 560-562.
21. Grong, O., Siewerts, T.A., Martins, G.P. et al. (1986) A model for the silicon-manganese deoxidation of steel weld metals. Metallurg. Transact. A, 17(10), 1797-1807.
22. Gurevich, Yu.G. (1972) Solubility of titanium, oxygen and nitrogen in molten iron. Izvestiya Vuzov. Chyorn. Metallurgiya, 5, 42-45.
23. Gurevich, Yu.G. (1960) Interaction of titanium with nitrogen and carbon in molten steel. Ibid., 6, 59-67.
24. Rittinger, J., Fehervari, A. (1976) Mikrootvozo elemek hatasa szerkezeti acelok szivossagara. GEP XXVIII Evfolyam, 7, 267-272.
25. Fehervari, A., Rittinger, J. Comments on Intern. Inst. of Welding. IIW Doc. XII-B-98-71, XII-B-109-72.
26. Yavdoshchin, I.R., Pokhodnya, I.K., Folbort, O.I. (2007) Increase in cold resistance of welds by optimization of alloying and microalloying systems in covered-electrode welding of increased- and high-strength steels. In: Proc. of 4th Int. Conf. on Welding Consumables in the CIS Countries «Welding Consumables. Development. Technology. Production. Quality. Competitiveness» (Krasnodar, 18-21 June 2007). Krasnodar, 218-223.