Print

2016 №06 (23) DOI of Article
10.15407/tpwj2016.06.24
2016 №06 (25)

The Paton Welding Journal 2016 #06
The Paton Welding Journal, 2016, #5-6, 137-142 pages

Additive manufacturing of metal products (Review)

V.V. Zhukov, G.M. Grigorenko and V.A. Shapovalov


E.O. Paton Electric Welding Institute, NASU 11 Kazimir Malevich Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua


Abstract
Different characteristics of methods of additive manufacturing of metal products were considered. The prospects of technologies using metal wire as a consumable material were noted. The current state of research works in the field of additive manufacturing of layer-by-layer electric arc volumetric surfacing was shown. 20 Ref., 3 Tables, 10 Figures.

Keywords: additive manufacturing, prototyping, shape formation and structure control, laser surfacing using consumable wire, freeform fabrication using electron beam, electric arc volumetric layer-by-layer surfacing


Received:                18.04.16
Published:               19.07.16


References

  1. Wong, K.V., Hernandez, A. (2012) A review of additive manufacturing. Scholarly Res. Network Mechanical Eng.; http://downloads.hindawi.com/journals/isrn/2012/208760.pdf
  2. Rizwan, Ali P.M., Hara Theja, C.R., Syed Mahammad Syed Sheb et al. (2015) Review on diverse materials applied for additive manufacturing. J. Res. in Applied Sci. & Eng. Techn., Vol. 3, Issue VII, 16–20; http://www.ijraset.com/fileserve.php?FID=2945
  3. Wohlers, T., Gornet, T. (2014) History of additive manufacturing: Wohlers Report. http://wohlersassociates.com/history2014.pdf
  4. Guessasma, S., Zhang, W., Zhu, J. et al. (2016) Challenges of additive manufacturing technologies from an optimisation perspective. J. Simulation and Multidisciplinary Design Optimization, 6; http://www.ijsmdo.org/articles/smdo/pdf/2015/01/smdo150009.pdf
  5. (2015) Quadrennial Technology Review. http://energy.gov/sites/prod/files/2015/09/f26/Quadrennial-Technology-Review-2015_0.pdf
  6. Ding, D., Pan, Z., Cuiuri, D. et al. (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. J. Advanced Manufac. Techn., 81(1–4), 465–481; http://www.researchgate.net/publication/275973182_Wire-feed_additive_manufacturing_of_metal_components_technologies_developments_and_future_interests
  7. Williams, S.W., Martina, F., Addison, A.C. et. al. (2015) Wire + arc additive manufacturing. Sci. and Techn.; http://www.researchgate.net/publication/277921887_WireArc_Additive_Manufacturing.
  8. Frazier, W.E. (2014) Metal additive manufacturing: a J. Mater. Eng. and Perform., 23(6), 1917–1928; http://link.springer.com/article/10.1007/s11665-014-0958-z/fulltext.html
  9. Simchi, A., Petzoldt, F., Pohl, H. (2003) On the development of direct metal laser sintering for rapid tooling. Materials Proc. Techn., 141, 319–328; http://www.ibrarian.net/navon/paper/On_the_development_of_direct_metal_laser_sinterin.pdf?paperid=21177098 https://doi.org/10.1016/s0924-0136(03)00283-8
  10. Kruth, J.P., Mercelis, P., van Vaerenbergh, J. et.al. (2004) Binding mechanisms in selective laser sintering and selective laser melting. In: of Solid Freeform Fabrication Symp. (Austin, USA), 44–59; http://sffsymposium.engr.utexas.edu/Manuscripts/2004/2004-06-Kruth.pdf
  11. Pal, D., Patil, N., Stucker, B.E. (2012) Prediction of mechanical properties of electron beam melted Ti6Al4V parts using dislocation density based crystal plasticity framework. In: of Solid Freeform Fabrication Symp. (Austin, USA), 37–43; http://sffsymposium.engr.utexas.edu/Manuscripts/2012/2012-40-Pal.pdf
  12. Michaels, S., Sachs, E.M., Cima, M.J. (1992) Metal parts generation by three dimensional printing. In: of Solid Freeform Fabrication Symp. (Austin, USA), 244–250; http://sffsymposium.engr.utexas.edu/Manuscripts/1992/1992-28-Michaels.pdf
  13. Atwood, C., Griffith, M., Harwell, L. et. al. (1998) Laser engineered net shaping (LENS™): A tool for direct fabrication of metal parts. In: of 17th Int. ALEO Congress (Orlando, USA), 16–19; http://digital.library.unt.edu/ark:/67531/metadc621198/
  14. Brandla, E., Baufeldb, B., Leyensc, C. et al. (2010) Additive manufactured Ti–6Al–4V using welding wire: Comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications. Laser Assisted Net Shape Eng., Vol. 5, Pt B, 595–606; http://www.sciencedirect.com/science/article/pii/S1875389210005134 https://doi.org/10.1016/j.phpro.2010.08.087
  15. Dave, V.R., Matz, J.E., Eagar, T.W. (1995) Electron beam solid freeform fabrication of metal parts. In: of Solid Freeform Fabrication Symp. (Austin, USA), 64–70; http://sffsymposium.engr.utexas.edu/Manuscripts/1995/1995-09-Dave.pdf
  16. Jandric, Z., Labudovic, M., Kovacevic, R. (2004) Effect of heat sink on microstructure of three dimensional parts built by welding-based deposition. J. Machine Tools and Manufac., 44(7/8), 785–796; https://www.smu.edu/~/media/Site/Lyle/RCAM/Publications/Effect %20of %20heat %20sink %20 on %20microstructure %20of %20three-dimensional.ashx
  17. Friel, R.J., Harris, R.A. (2013) Ultrasonic additive manufacturing — a hybrid production process for novel functional products. In: of 7th CIRP Conf. on Electro Physical and Chemical Machining, Vol. 6, 35–40; http://www.sciencedirect.com/science/article/pii/S2212827113000784 https://doi.org/10.1016/j.procir.2013.03.004
  18. Dickens, P.M., Pridham, M.S., Cobb, R.C. et al. (1992) Rapid prototyping using 3-D welding. In: of Solid Freeform Fabrication Symp. (Austin, USA), 280–290; http://sffsymposium.engr.utexas.edu/Manuscripts/1992/1992-32-Dickens.pdf
  19. Skiba, T., Baufeld, B., van der Biest, O. (2009) Microstructure and mechanical properties of stainless steel component manufactured by shaped metal deposition. ISIJ Int., 49(10), 1588–1591; http://www.jstage.jst.go.jp/article/isijinternational/49/10/49_10_1588/_pdf
  20. Shapovalov, V.A. (2015) Control of metal structure in process of solidification. Elektrometallurgiya, 2, 51–54.