The Paton Welding Journal, 2025, #2, 30-37 pages
Refining metallurgical silicon
G.G. Didikin, V.O. Osokin, Ya.A. Stelmakh
E.O. Paton Electric Welding Institute of the NASU.
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: didikin@paton-icebt.kiev.ua
Abstract
The review presents modern technologies used to refine metallurgical silicon to a purity of 5‒6 N for photovoltaic cells. Refining
of silicon is performed using an intermediate metal Al to capture silicon impurities after its fusion with Si. The removal
of C, Ca, Fe, Ti, P from the Al-Si melt with Si is shown. After a two-time directional crystallization of the melt, Si of a purity
acceptable for use in photovoltaic technologies was produced. Positive results were obtained during plasma remelting with the
simultaneous application of gases in the core: Ar‒H2, H2‒H2O, O2, or H2 in an Ar-based plasma. The electromagnetic stirring of
the bath provides accelerated mass transfer in the liquid compared to the reaction rate on the surface with control of the surface
shape. Removal of metal impurities Na, Ca, Ba, and Al up to 90‒100 % was achieved using 30 % H2 in Ar plasma. Carbon
removal was observed using oxygen in the plasma at temperatures above 1530 °C. It was found that H2 is more effective in
plasma than O2. A constant voltage in the liquid bath increases the refining efficiency by 10 times. The best results in removing
boron from molten silicon were obtained by blowing the melt with humidified argon or water vapor. The resulting silicon
product had favorable electronic properties. It is noted that during electron beam remelting, it is possible to purify silicon from
elements with high vapor pressure and perform oxidative refining from boron impurities using a mixture of oxygen and inert
gas with application of a cold hearth and zone recrystallization. In the process of EBCZM, after increasing the vacuum depth,
the amount of oxygen and phosphorus in silicon can be reduced by a factor of 10.
Keywords: metallurgical silicon, purification, vacuum and oxidative refining, plasma remelting, electron beam melting,
silicon, solar grades, impurity elements
Received: 10.06.2024
Received in revised form: 31.10.2024
Accepted: 16.01.2025
References
1. Despoto, E., El Gammal, A., Fontaine, B. et al. (2010) Global market outlook for photovoltaics until 2014, European Photovoltaic Industry Association, Brussels, 2010). https://www.academia.edu/98819863/High_Temperature_Refining_of_Metallurgical_Grade_Silicon_A_Review?uc-sb-sw=98763071
2. Johnston, M.D., Khajavi, L.T., Li, M. et al. (2012) High-temperature refining of metallurgical grade silicon: A review. JOM, 64, 935.
https://doi.org/10.1007/s11837-012-0384-33. Obinata, I., Komatsu, N. (1957) Thermodynamics of phosphorus in solvent refining of silicon using ferrosilicon alloys. Sci. Rep. RITU, A-9, 118-30. https://ouci.dntb.gov.ua/en/works/ldBWBkY7/
4. Ciftja, A., Engh, T.A., Tangstad M. (2008) Refining and recycling of silicon: A review. NTNU, Trondheim. https://www.researchgate.net/publication/267552614_Refining_and_Recycling_of_Silicon_A_Review
5. Kotval, P.S., Strock, H.B. (1978) US Pat. 4,124,410, Union Carbide Corporation.
6. Kotval, P.S., Strock, H.B. (1980. a) US Pat. 4,193,974, Union Carbide Corporation.
7. Kotval, P.S., Strock, H.B. (1980. b) US Pat. 4,193,975, Union Carbide Corporation.
8. Kotval, P.S., Strock, H.B. (1980. c) US Pat. 4,195,067, Union Carbide Corporation.
9. Gumaste, J., Mohanty, B., Galgali, R. et al. (1987) Solvent refining of metallurgical grade silicon. Sol. Energy Mater., 16, 289-96.
https://doi.org/10.1016/0165-1633(87)90077-310. Yoshikawa, T., Morita, K. (2005) In: EPD Congress on High-Temperature Refining of Metallurgical-Grade Silicon (TMS, Warrendale, PA), 549-58. https://tspace.library.utoronto.ca/bitstream/1807/93627/1/High%20Temp_TSpace.pdf
11. Bathey, B., Cretella, M.C. (1982) Vacuum refining of molten silicon. J. Mater. Sci., 17, 3077-96.
https://doi.org/10.1007/BF0120346912. Yoshikawa, T., Arimura, K., Morita, K. (2005) Thermodynamics of impurities removal from Si-Fe alloy. Metall. Mater. Transact. B, 36B(6), 837-42.
https://doi.org/10.1007/s11663-005-0085-113. Theuerer, H.C. (1956) Boron removal from silicon by humidified gases. J. Metals, 8, 1316-19.
https://doi.org/10.1007/s40553-014-0007-814. Morvan, D., Amouroux, J., Charpin, M.C., Lauvrey, H. (1983) High-temperature refining of metallurgical-grade silicon: A review. Rev. Phys. Appl., 18(4), 239-51.
https://doi.org/10.1051/rphysap:0198300180402390015. Suzuki, K., Kumagai, T., Sano, N. (1992) ISIJ Int., 32(5), 630-634. https://link.springer.com/article/10.1007/BF02662772
https://doi.org/10.2355/isijinternational.32.63016. Ikeda, T., Maeda, M. (1996) High-temperature refining of metallurgical grade silicon. Mater. Transact., JIM, 37(5), 983-87. https://tspace.library.utoronto.ca/bitstream/1807/93627/1/High%20Temp_TSpace.pdf
https://doi.org/10.2320/matertrans1989.37.98317. Nakamura, N., Baba, H., Sakaguchi, Y., Kato, Y. (2004) Boron removal from silicon by humidified gases. Mater. Transact., 45(3), 858-64. https://link.springer.com/article/10.1007/s11663-005-0085-1
https://doi.org/10.2320/matertrans.45.85818. Suzuki, K., Kumagai, T., Sano, N. (1992) Thermodynamics of boron in a silicon melt. ISIJ Int., 32(5), 630-34. https://link.springer.com/article/10.1007/s11663-012-9671-1
https://doi.org/10.2355/isijinternational.32.63019. Lynch, D. (2009) Winning the global race for solar silicon. JOM, 61(11), 41-48.
https://doi.org/10.1007/s11837-009-0166-820. Delannoy, Y., Alemany, C., Li, K.-I. et al. (2002) Plasma-refining process to provide solar-grade silicon. Sol. Energy Mater. Sol. Cells, 72, 69-75. https://www.academia.edu/6146609/Plasma_refining_process_to_provide_solar_grade_silicon
https://doi.org/10.1016/S0927-0248(01)00151-921. Alemany, C., Trassy, C., Pateyron, B. et al. (2012) Processes for upgrading metallurgical grade silicon to solar grade silicon. Sol. Energy Mater. Sol. Cells, 72, 41-48.
https://doi.org/10.1016/j.egypro.2012.03.01122. Tsao, S., Lian, S.-S. (2005) Boron removal from silicon by humidified gases. Mat. Sci. Forum, 475-479, 2595-98.
https://doi.org/10.1007/s40553-014-0007-823. Rousseau, S., Benmansour, M., Morvan, D., Amouroux, J. (2007) Boron removal from silicon by humidified gases. Sol. Energy Mater. Sol. Cells, 91(20), 1906-15.
https://doi.org/10.1007/s40553-014-0007-824. Benmansour, M., Rousseau, S., Morvan, D. (2008) High-temperature refining of metallurgical-grade silicon: A review. Surf. Coat. Technol., 203, 839-43.
https://doi.org/10.1016/j.surfcoat.2008.05.03225. Moon, D.V., Lee, H.M, Kim, B.K. (2010) Boron removal from UMG-Si by hydrid melting utilizing Steam plasma torch and EMCM. In: Proc. of Conf. on Photovoltaic Spesialist, 35th IEEE, Honolulu, 20-25 June 2010, 002194-002197.
https://doi.org/10.1109/PVSC.2010.561611126. Nakamura, N., Baba, H., Sakaquchi, Ya., Kato, Yo. (2004) Boron removal in molten silicon by a steam-faded plasma melting method. Materials Transact., 45(3), 858-864.
https://doi.org/10.2320/matertrans.45.85827. Shapovalov, V.A., Sheiko, I.V., Nikitenko, Yu.A. et al. (2012) Induction melting and refining of silicon in a sectional solidification mould. Advances in Electrometallurgy, 4, 259-263.
28. Grigorenko, G.M., Shapovalov, V.A., Sheiko, I.V. et al. (2013) Refining of silicon in levitation melting. Advances in Electrometallurgy, 1, 40-45.
29. Fogel, A.A. (1979) Induction method of liquid metal containment in levitation. Leningrad, Mashinostroenie [in Russian].
30. Grigorenko, G.M., Sheiko, I.V. (2006) Induction melting of metals in cold crucibles and cooled sectional moulds. Kyiv, Stal [in Russian].
31. Future of solar photovoltaic, deployment, investment, technology, grid integration and socio-economic aspects. https://www.irena.org/publications/2019/Nov/Future-of-Solar-Photovoltaic
32. Solar power Europe, what's cool in solar: Wafers. https://www.solarpowereurope.org/whats-cool-in-solar-wafers/
33. Osokin, V.A., Shpak, P.A., Ishchenko, V.V. et al. (2008) Electron beam technology of polycrystalline silicon refining for solar energy. Metallurg, 2, 69-73 [in Russian].
34. Osokin, V.A., Panibratsky, V.A. (2010) Refining of metallurgical silicon by vacuum electron beam method. Vymiryuvalna ta Obchyslyuvalna Tekhnika v Tekhnologichnykh Protsessakh, 2, 40-47 [in Russian].
35. Osokin, V.A., Panibratsky, V.A., Shpak, P.A., Piyuk, E.L. (2011) Peculiarities of structure of high-pure silicon produced by electron beam refining of metallurgical silicon. Metallurg, 8, 82-87 [in Russian].
https://doi.org/10.1007/s11015-011-9475-636. Ikeda, T., Maeda, M. (1992) Purification of metallurgical silicon for solar-grade silicon by electron beam button melting. ISIJ Int., 32(5), 635-642.
https://doi.org/10.2355/isijinternational.32.63537. Suzuki, K., Sakaguchi, K., Nakagiri, T., Sano, N. (1990) Gaseous removal of phosphorus and boron from molten silicon. J. Japan Inst. Met., 54(2), 161-67.
https://doi.org/10.2320/jinstmet1952.54.2_16138. Pires, J.C.S., Braga, A.F.B., Mei, P.R. (2003) High-temperature refining of metallurgical-grade silicon: A review. Energy Mater. Sol. Cells, 79(3), 347-55.
https://doi.org/10.1016/S0927-0248(02)00471-339. Pires, J.C.S., Otubo, J., Braga, A.F.B., Mei, P.R. (2005) The purification of metallurgical grade silicon by electron beam melting. Mat. Proc. Tech., 169(1), 16-20.
https://doi.org/10.1016/j.jmatprotec.2004.03.03540. Hanazawa, K., Yuge, N., Kato Y. (2004) Model implementation of boron removal using CaCl2-CaO-SiO2 slag system for solar-grade silicon. Mater. Transact., 45(3), 844-49.
https://doi.org/10.1007/s11663-017-1105-741. Berezos, V.A. (2013) Electron beam refining of crystalline silicon. Advances in Electrometallurgy, 3, 188-194.
42. Berezos, V.A., Erokhin, A.G. (2009) Refining silicon by electron beam melting. Advances in Electrometallurgy, 3, 174-177.
43. Asnis, E.A., Piskun, N.V., Statkevich I.I. (2011) Purification of silicon to remove phonon and doping impurities in electron beam crucibleless zone melting. Advances in Electrometallurgy, 4, 215-217.
44. Paton, B.E., Asnis, E.A., Zabolotin, S.P. et al. (2003) Production of extrapure bulk semiconductor materials under space vacuum. Kosmichna Nauka i Tekhnologiya, 9(5-6), 30-32 [in Russian].
45. Pfann, B. (1970) Zone melting. Moscow, Mir [in Russian].
46. Nepomnyashchikh, A.I., Krasin, B.A., Vasilieva, I.E. et al. (2002) Multicrystalline silicon for solar energy. Materialy Elektronnoj Tekhniki, 4, 16-24 [in Russian].
47. Osokin, V.O., Stelmakh, Y.A., Kurapov, Yu.A., Shpak, P.O. (2022) Features of impurity segregation and microstructure of si ingot obtained by electron-beam purification of metallurgical grade silicon. J. of Nano- and Electronic Physics, 14(6), 06012.
https://doi.org/10.21272/jnep.14(6).06012
Suggested Citation
G.G. Didikin, V.O. Osokin, Ya.A. Stelmakh (2025) Refining metallurgical silicon.
The Paton Welding J., 02, 30-37.