Print

2013 №12 (09) 2013 №12 (02)

The Paton Welding Journal 2013 #12
The Paton Welding Journal, 2013, #12, 2-8 pages

LASER SURFACE ALLOYING OF STEEL ITEMS (Review)

A.V. BERNATSKY


E.O. Paton Electric Welding Institute, NASU, Kiev, Ukraine. 11 Bozhenko Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua
 
 
Abstract
Analysis of publications devoted to laser surface alloying of steel items has been performed. Processes occurring at formation of the structure of surface layers at laser alloying of steels have been studied. Examples of practical application of laser surface alloying of steels by various materials and mixtures are given. It is shown that laser alloying enables formation of surface of steel items having a high level of hardness, heat-, wear- and corrosion resistance and other physico-mechanical characteristics. It is found that the work performed in this direction was not of a systematic nature, and quite often was aimed at solving a localized task of improvement of performance of a particular material or parts made from it. Therefore, results obtained by various authors cannot be systematized, because of significant differences in the schematics and conditions of research performance. 50 Ref., 2 Figures.
 
 
Keywords: laser alloying, schematic, process, alloyed zone, steel, alloying materials, commercial application
 
 
Received:                02.09.13
Published:               28.12.13
 
 
References
1. Petrenko, K.P. (2013) Structural model of design of strengthening technological processes providing preset quality of surface layer. Uprochn. Tekhnologii i Pokrytiya, 1, 7-9.
2. Pavlov, M.D., Tarasova, T.V., Nazarov, A.P. et al. (2012) Effect of preliminary preparation of product surface on quality of laser clad coatings. Ibid., 12, 31-34.
3. Nazarov, Yu.F., Ivanajskykh, A.V., Tochilin, P.V. et al. (2010) Economic efficiency of high technologies by the example of laser production. Svarochn. Proizvodstvo, 3, 48-50.
4. Saraev, Yu.N., Bezborodov, V.P., Durakov, V.G. et al. (2012) Modification of structure of compositions with protective coatings by alloying and high-energy impact. Ibid., 12, 10-13.
5. Gulyaev, A.P. (1986) Metals science. 6th ed. Moscow: Metallurgiya.
6. Chudina, O.V. (2003) Combined technologies of surface strengthening of structural steels: Syn. of Thesis for Dr. of Techn. Sci. Degree. Moscow: MGADI.
7. Stadler, F., Antrekowitsch, H., Fragneretal, W. (2013) The effect of main alloying elements on the physical properties of Al-Si foundry alloys. Materials Sci. and Eng., 560, 481-491.
8. Anandan, S., Pityana, L., Majumdar, J.D. (2012) Structure property correlation in laser surface alloyed AISI 304 stainless steel with WC + Ni + NiCr. Ibid., 536, 159-169.
9. Lakhtin, Yu.M., Leontieva, V.P. (1990) Materials science. 3rd ed. Moscow: Mashinostroenie.
10. Grigoriants, A.G., Shiganov, I.N., Misyurov, A.I. (2006) Technological processes of laser treatment. Moscow: N.E. Bauman MGTU.
11. Kalashnikova, M.S. (2003) Improvement of service properties of low-carbon steel surface by laser alloying method: Syn. of Thesis for Cand. of Techn. Sci. Degree. Ekaterinburg: PGTU.
12. Abilsiitov, G.A., Golubev, V.S., Gontar, V.G. et al. (1991) Technological lasers: Refer. Book. Vol. 1: Calculation, design and service. Moscow: Mashinostroenie.
13. Kovalenko, V.S., Golovko, L.F., Chernenko, V.S. (1990) Strengthening and alloying of machine parts by laser beam. Kiev: Tekhnika.
14. Burakov, V.A., Brover, G.I., Burakova, N.M. (1985) Improvement of heat resistance of high-speed steels by laser alloying. Metallovedenie i Term. Obrab. Metallov, 11, 2-6.
15. Likhoshva, V.P., Shatrava, A.P., Bondar, L.A. (2007) Laser alloying of friction assembly. Protsessy Litia, 3, 35-37.
16. Dobrzanski, L.A., Bonek, M., Hajduczek, A. et. al. (2004) Application of high power diode laser (HPDL) for alloying of X40CrMoV5-1 steel surface layer by tungsten carbides. J. Mater. Proc. Technol., 155/156, 1956-1963.
17. (2009) Laser technologies and computer modeling. Ed. by L.F. Golovko and S.O. Lukianenko. Kyiv: Vistka.
18. Zhong, M., Liu, W., Zhang, H. (2006) Corrosion and wear resistance characteristics of NiCr coating by laser alloying with powder feeding on grey iron liner. Wear, 260, Issues 11/12, 1349-1355.
19. Isshiki, Y., Shi, J., Nakai, H. et al. (2000) Microstructure, microhardness, composition and corrosive properties of stainless steel 304 L. Laser surface alloying with silicon by beam-oscillating method. Appl. Physics A, 70, Issue 4, 395-402.
20. Majumdar, J.D. (2008) Development of wear resistant composite surface of mild steel by laser surface alloying with silicon and reactive melting. Mater. Lett., 62, 4257-4259.
21. Kruth, J.-P., Levy, G., Klocke, F. et al. (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals Е Manufact. Technology, 56, Issue 2, 730-759.
22. Ignatov, M.N., Kalashnikova, M.S., Belova, S.A. (2002) Influence of temperature-time parameters on structure and properties of surface layer of structural steels after laser alloying. Vestnik PGTU. Series Mechanics and Technology of Materials and Structures, 5, 154-159.
23. Garashchuk, V.P. (2005) Principles of physics of lasers. Lasers for thermal technologies. Kiev: PWI.
24. Biryukov, V.P. (2008) Influence of distribution of laser beam power density on increase in wear resistance of friction surfaces. Vestnik Mashinostroeniya, 3, 33-36.
25. Majorov, V.S., Matrosov, M.P. (1989) Influence of surfactants on hydrodynamics of laser alloying of metals. Kvant. Elektronika, 16(4), 806-810.
26. (2009) Laser technologies of treatment of materials: Current problems of fundamental research and applied developments. Ed. B.Ya. Panchenko. Moscow: Fizmatlit.
27. Kindrachuk, M.V., Ishchuk, N.V., Golovko, L.F. et al. (2007) Principles of formation of nitrided layers by combined laser-chemical-heat treatment of steels. Metaloznavstvo ta Obrobka Metaliv, 1, 31-35.
28. Kindrachuk, M.V., Dudka, O.I., Sukhenko, Yu.G. et al. (2001) Influence of thermocycling on tribotechnical properties of boride layers made by laser alloying. Transact. of UDUKhT, 10, 74-75.
29. Emami, M., Shahverdi, H.R., Hayashi, S. et al. (2013) A combined hot dip aluminizing/laser alloying treatment to produce iron-rich aluminides on alloy steel. Metall. and Mater. Transact. A, 2, 1-9.
30. Biryukov, V.P. (2011) Laser strengthening and alloying. Fotonika, 3, 34-37.
31. Leech, P.W., Batchelor, A.W., Stachowiak, G.W. (1992) Laser surface alloying of steel wire with chromium and zirconium. J. Mater. Sci. Lett., 11, Issue 16, 1121-1123.
32. Tarasova, T.V. (2010) Prospects of application of laser radiation to increase wear resistance of corrosion-resistant steels. Metallovedenie i Term. Obrab. Metallov, 6, 54-58.
33. Kornienko, O.A., Yakhia, M.S., Ishchuk, N.V. et al. (2008) Formation of coating of tribotechnical purpose by combined, laser-chemical-thermal treatment. In: Problem of friction and wear: Transact., 2, Issue 49, 61-65. Kyiv: NAU.
34. Thawari, G., Sundarararjan, G., Joshi, S.V. (2003) Laser surface alloying of medium carbon steel with SiC(P). Thin Solid Films, 423, 41-53.
35. Dobrzanski, L.A., Bonek, M., Labisz, K. (2013) Effect of laser surface alloying on structure of a commercial tool steel. J. Microstructure and Mater. Properties, 8, Issue 1/2, 27-37.
36. Lazko, G.V. (2009) Peculiarities of structure formation and ways to improve properties of barrier layers on corrosion-resistant steels, formed by laser alloying: Syn. of Thesis for Cand. of Techn. Sci. Degree. Donetsk: DNTU.
37. Kalashnikova, M.S., Belova, S.A., Mazepina, Yu.A. et al. (2003) Corrosion resistance of structural steel surface layers after laser treatment. Fizika i Khimiya Obrab. Materialov, 2, 34-39.
38. Haferkamp, H., Bach, F.-W., Gerken, J. (1995) Laserstrahllegieren plasmagesprittzer Molybdanschichten in Stahloeberflachen zur Erhoehung des Verschleisswiderstandes. Metall, 49, Issue 7/8, 516-522.
39. Zhostik, Yu.V. (1998) Study of impact wear of shearing dies and increase in their resistance due to laser alloying: Syn. of Thesis for Cand. of Techn. Sci. Degree. Bryansk: BGITA.
40. Inyutin, V.P., Kolesnikov, Yu.V., Zhostik, Yu.V. (1986) Effect of laser boronizing on contact deformations of steel 45 under impact-cyclic loading. Elektr. Tekhnika. Series 6: Materials, 215, Issue 4, 77-78.
41. Klocke, F., Rozsnoki, L., Celiker, T. et al. (1996) New developments in surface technology: Laser alloying using Mo/VC and Mn. CIRP Annals Е Manufact. Technology, 45, Issue 1, 179-182.
42. Klocke, F., Auer, O., Hamers, M. (1998) Verschleissreduzierung bei Schmiedewerkzeugen. Maschinenmarkt, 104, Issue 34, 32-33.
43. Klocke, F., Auer, O., Hamers, M. (2002) Verschleissschutz von Warmumformwerkzeugen. VDI-Z Integrierte Produktion Special, 2, 67-69.
44. Klocke, F., Auer, O., Hamers, M. (2000) Laser scan help protect tools. Quelle Diecasting World, 6, 18-21.
45. Kastro, V.A. (2012) Development of technology for laser thermal strengthening and alloying of steels for power machine building with the purpose of increase of service life of items: Syn. of Thesis for Cand. of Techn. Sci. Degree. Nizhny Novgorod: R.E. Alekseev NGTU.
46. Kastro, V.A., Gavrilov, G.N., Brauer, I. et al. (2011) Peculiarities of steel structure formation in laser thermal cycle. Zagotovit. Proizvod. v Mashinostroenii, 12, 38-41.
47. (1997) Werkzeugehaerten senkt die Kosten. http:// www.archiv.fraunhofer.de/archiv/alte %20jahresbe richte/pflege.zv.fhg.de/german/publications/jahre s-ber/jb1997/f_oberfl.htm1
48. Gavrilov, G.N. (2000) Development and mastering of technologies for surface thermal strengthening and surfacing of metallic materials by laser radiation: Syn. of Thesis for Dr. of Techn. Sci. Degree. Nizhny Novgorod: NGTU.
49. Gavrilov, G.N., Gorshkova, T.A., Fedoseev, V.B. (1997) Influence of thermochemical effect on laser alloying process. Izvestiya Inzh.-Tekhnolog. Akad. Chuvash. Resp.: Joint Sci. J., 3/4, 118-121.
50. Gavrilov, G.N., Gorshkova, T.A., Dubinsky, V.N. (1998) Study of wear resistance of steel 45 after laser alloying. Ibid., 1/2, 122-125.

Suggested Citation

A.V. BERNATSKY (2013) LASER SURFACE ALLOYING OF STEEL ITEMS (Review). The Paton Welding J., 12, 2-8.