Print
2025 №02 (03) DOI of Article
10.37434/tpwj2025.02.04
2025 №02 (05)

The Paton Welding Journal 2025 #02
The Paton Welding Journal, 2025, #2, 24-29 pages

Producing a wüstite melt by thermal decomposition of hematite pellets with argon plasma

V.O. Shapovalov1, V.G. Mogylatenko1,2, M.V. Karpets1,2, R.V. Kozin1

1E.O. Paton Electric Welding Institute of the NASU. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine.
2National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” 37 Prosp. Beresteiskyi, 03056, Kyiv, Ukraine. E-mail: vmogilatenko@gmail.com

Abstract
Reducing CO2 emissions is of paramount importance, in order to address the issues of global warming. The negative contribution of Ukrainian metallurgists to atmospheric pollution over the past 20 years amounted to about 1 bln t of carbon dioxide by the year 2020. The solution can be found in the transition to the production of “green steel”, i.e. steel manufactured from direct hydrogen-based reduction iron. Under the conditions of applying plasma heating, high temperatures lead to a rapid melting of pellets, thermal decomposition of oxides occurs, and a reducing agent (hydrogen) is activated. Decomposition of oxides during the heating and melting process accelerates the overall process of pellet reduction to wüstite. And only in that moment, the use of hydrogen for reduction of iron and its deoxidation becomes justified. It was established that forming of a wüstite melt is possible without the use of a reducing agent during plasma melting in an argon atmosphere.
Keywords: direct reduction, pellets, thermal decomposition, kinetics, magnetite melt, dilution with iron, wüstite

Received: 16.09.2024
Received in revised form: 21.10.2024
Accepted: 31.03.2025

References

1. World steel in figures. https://worldsteel.org/steel-topics/statistics/world-steel-in-figures/
2. Kolisnichenko, V. Carbon emissions in metallurgy will be reduced by 30 % by 2050 — Woodmac [in Ukrainian]. https://gmk.center/ua/news/vybrosy-ugleroda-v-metallurgii-k-2050-godu-sokratyatsya-na-30-woodmac-2/
3. Kolisnichenko, V. 10 biggest polluting countries emitted record amount of CO2 in 2023 [in Ukrainian]. https://gmk.center/ua/news/10-najbilshih-krain-zabrudnjuvachiv-u-2023-roci-vikinuli-rekordnu-kilkist-so2/
4. In 2024 steel production in Ukraine will amount 7‒8 mln t according to experts. https://delo.ua/ru/industry/v-2024-godu-vyplavka-stali-v-ukraine-sostavit-7-8-mln-tn-429900/
5. By the results of 2023 Ukrainian metallurgists produced 5.37 mln t of roll stock. https://gmk.center/news/ukrainskie-metallurgi-po-itogam-2023-goda-proizveli-5-37-mln-t-prokata/
6. Metallurgy of Ukraine: 30 years of evolution and partnership. https://mind.ua/ru/publications/20230257-metallurgiya-ukrainy-30-let-evolyucii-i-partnerstva
7. Behera, P., Rajput, P., Bhoi, B. (2022) A sustainable technology to produce green and clean steel by hydrogen plasma smelting reduction. In: Proc. of the IEI Conf. on Advanced Materials Technology Department CSIR-Institute of Minerals and Materials Technology, Bhubanswar, Odisha, India, 751013. DOI: https://doi.org/10.36375/prepare_u.iei.a282. https://preprint.prepare.org.in/index.php/iei/article/view/282/155
8. (2021) Carbon-free steel production: Cost reduction options and usage of existing gas infrastructure. European Parliamentary Research Service. Brussels. EU. DOI: https://doi.org/10.2861/01969. https://www.europarl.europa.eu/RegData/etudes/STUD/2021/690008/EPRS_STU(2021)690008_EN.pdf
9. Electricity production in Ukraine increased by 5 % over the year. Ekonomichna Pravda [in Ukrainian]. https://www.epravda.com.ua/news/2022/01/11/681292/
10. Tiara Triana, Geoffrey Brooks, M. Akbar Rhamdhani (2024) Ammonia direct reduction of iron oxides-preliminary assessment. In: Proc. of the Iron & Steel Technology Conf. (AISTech 2024), Columbus, Ohio, USA, 295–302. DOI: https://doi.org/10.33313/388/035
11. Tiara Triana, Geoffrey A. Brooks, M. Akbar Rhamdhani, Mark I. (2024) Iron oxide direct reduction and iron nitride formation using ammonia: Review and thermodynamic analysis. J. of Sustainable Metallurgy, 10, 1428–1445. DOI: https://doi.org/10.1007/s40831-024-00860-z
12. QuData AI-assistant. https://qudata.com/ru/chat-gpt/
13. Tiago Bristt Gonoring, Adonias Ribeiro Franco, Estefano Aparecido Vieira, Ramiro Conceição Nascimento (2022) Kinetic analysis of the reduction of hematite fines by cold hydrogen plasma. J. of Materials Research and Technology, 20, 2173–2187. DOI: https://doi.org/10.1016/j.jmrt.2022.07.174
14. Lakomsky, V.I. (1974) Plasma arc remelting: Monography. Kyiv, Tekhnika [in Russian].
15. Grigorenko, G.M., Pomarin, Yu.M. (1989) Hydrogen and nitrogen in metals during plasma melting. Kyiv, Naukova Dumka [in Russian].
16. Shurkhal, V.Ya., Larin, V.K., Chernega, D.F. et al. (2000) Physical chemistry of metallurgical systems and processes: Manual. Kyiv, Vyshcha Shkola [in Ukrainian].
17. Kozin, R.V., Shapovalov, V.O., Mogylatenko, V.G., Biktagirov, F.K. (2023) Analysis of direct reduction of iron by hydrogen. In: 15th Inter. Sci.-Tekhn. Conf. on New Materials and Technologies in Mechanical Engineering, 9 April 27–28, 2023, Kyiv, KPI, IPMS, PWI.
18. Knyuppel, G. (1973) Deoxidation and vacuum treatment of steel. Pt 1. Thermodynamic and kinetic regularities. Moscow, Metallurgiya [in Russian].
19. Shapovalov, V.O., Mogylatenko, V.G., Karpets, M.V., Kozin, R.V. (2023) Thermal decomposition of hematite pellets at heating by argon plasma. Suchasna Elektrometal., 3, 13–18 [in Ukrainian]. DOI: https://doi.org/10.37434/sem2023.03.03

Suggested Citation

V.O. Shapovalov, V.G. Mogylatenko, M.V. Karpets, R.V. Kozin (2025) Producing a wüstite melt by thermal decomposition of hematite pellets with argon plasma. The Paton Welding J., 02, 24-29.