Eng
Ukr
Rus
Print

2017 №02 (08) DOI of Article
10.15407/sem2017.02.01
2017 №02 (02)

Electrometallurgy Today 2017 #02
Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2017, #2, 3-10 pages

Effect of slag consumption in ESR on metal composition and process technological parameters

L.A. Lisova1, A.P. Stovpchenko1,2, L.B. Medovar1,2, V.L. Petrenko1,2



1E.O. Paton Electric Welding Institute, NASU. 11 Kazimir Malevich Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua
2Engineering Company «ELMET-Roll» A. C. 259, 03150, Kiev. E-mail: office@elmet-roll.com.ua
The paper describes the possible slag losses in electroslag remelting. The amount of losses for skull formation of different thickness (1, 3, 5, 10 mm) was evaluated in remelting of large-sized ingot using slags ANF-39 and ANF-28. Changes in component composition of gas-slag-metal system, which were caused by decrease in slag mass for skull formation and in case of compensation of these losses, are considered. The effect of changes in slag amount on technological parameters of melting was investigated. Ref. 17, Tables 5, Figures 5.
Keywords: electroslag remelting; slag skull; slag losses, slag properties; gas–slag–metal system

References


1. Medovar B. I., Tsykulenko A. K., Shevtsov V. L. (1986) Metallurgiya elektroshlakovogo protsessa. Kiev, Naukova dumka. [in Russian].
2. Shverdtfeger K., Klyaynn K. (1975) Skorost uletuchivaniya ftora iz ftorsoderzhashchikh zhidkikh shlakov. Elektroshlakovy pereplav. B. I. Medovar (red.). Kiev, Naukova dumka, 3, 101– 110. [in Russian].
3. Roshin V. E., Malkov N. V., Gainullin A. A. et al. (1984) The kinetic of evaporation CaF2–SiO2 melts with rare-earth metals additions. Proceedings of RAS. Metals., 3, 56–61.
4. Kleshchenak G. I. (2016) Novye ekologicheski chistye materialy dlya elektroshlakovoy pererabotki metallootkhodov na osnove medi. http://www.znk.by/arhiv/04_05/27.html. [in Russian].
5. Jhao J.-X., Chen Y.-M., LI X.-M. et al. (2011) Electroslag Remelting Process. Journal of Iron and Steel Research, International, 18, 10, 53–28.
6. Shi C., Cho J., Zheng D. et al. (2016) Fluoride evaporation and crystallization behavior of CaF2–CaO–Al2O3–(TiO2) slag for electroslag remelting of Ti-containing steels. International Journal of Minerals, Metallurgy ang Materials, 23, 6, 627–636. https://doi.org/10.1007/s12613-016-1275-3
7. http://www.science.gov (United States) Busch J. D. (2017) Flux entrapment and Titanium Nitride defects during electroslag remelting.
8. Wang X., LI Y., Yan C. et al. (2012) The physical properties of CaF2–CaO–Al2O3–SiO2 slag system for ESR of 12Cr. Special Issue Ninth International Conference on Molten Slags, Fluxes and Salts, CD.
9. Zhao J., Ling H., Zhan Zh et al. (2012) Mechanism of slag chemical composition change in ESR process. Ibid.
10. Guo M. (2013) Mechanisms of calcium oxide dissolution in CaO–Al2O3–SiO2–based slags. Proccidings of the International Symposiun on Liquid Metal Processing & Casting (LMPC13), pp. 101–107.
11. Arh B., Podgornik B., Burja J. (2016) Electroslag remelting: a process overview. Materials and technology, 971–978. https://doi.org/10.17222/mit.2016.108
12. Madono O. (1975) O proizvodstve sverkhkrupnykh slitkov metodom ESR. Elektroshlakovy pereplav. B. I. Medovar (red.). Kiev, Naukova dumka, 3, ss. 303–308. [in Russian].
13. http://www.metallurgie.rwth-aachen.de/new/images/ pages/publikationen/raedwitz_emc201_id_3459.pdf. Radwitz S., Morscheiser J., Friedrich B. (2013) Parameters determining Solidification Structure and Process Efficiency of ESR Superalloys. Proceedings of European Metallurgical Conference (EMC 2013), pp. 1–6.
14. Stovpchenko G. P., Lisova L. O., Medovar L. B. et al. (2016) Development of electroslag remelting slag, tended to autodecomposition. Sovremennaya elektrometallurgiya, 3, 3–8. [in Ukrainian].
15. Medovar B. I., Shevtsov V. L., Martyn V. M. i dr. (1988) Elektroshlakovaya tigelnaya plavka i razlivka metalla. B. E. Paton (red.). Kiev, Naukova dumka. [in Russian].
16. Chang L. Z. 3 et al. (2014) Study on mechanism of oxygen increase and countermeasure to control oxygen content during electroslag remelting process. Ironmaking and Steelmaking, 41, 3, 182–186. https://doi.org/10.1179/1743281213Y.0000000114
17. Zherebtsov S. N., Radchenko V. G. (2003) Elektroshlakovy pereplav stali marok 20K i 22K. Polzunovsky almanakh, 4, 176–177. [in Russian].