Позорная война рф против Украины

Начата 20 февраля 2014 и полномасштабно продолжена 24 февраля 2022 года. С первых же минут рф ведет ее с нарушением законов и правил войны, захватывает атомные станции, уничтожает бомбардировками мирное население и объекты критической инфраструктуры. Правители и армия рф - военные преступники. Все, кто платит им налоги или оказывают какую-либо поддержку - пособники терроризма. Народ Украины вас никогда не простит и ничего не забудет.

2020 №01 (06) DOI of Article
2020 №01 (02)

Electrometallurgy Today 2020 #01
SEM, 2020, #1, 8-13 pages

Thermodynamics of interactions and physical properties of slags of 30CaF2/30CaO/30Al2O3 (SiO2, MgO) system at electroslag remelting

L.O. Lisova1, G.P. Stovpchenko2, I.O. Goncharov1, Ia.V. Gusiev1, L.B. Medovar1
1E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2PC «ELMET-ROLL». P.O. Box 259, 03150, Kyiv, Ukraine. E-mail: office@elmet-roll.com.ua

Thermodynamic calculations of the equilibrium content of components in the gas–slag–metal system were performed for the conditions of electroslag remelting of 15Cr11MoV steel in inert gas atmosphere (argon) under 30CaF2/30CaO/30Al2O3 slags with various SiO2 (1; 2,5; 4 wt.%) and MgO (3; 6; 12 wt.%) content. Appearance of MnO (0.04…0.07 wt.%) and FeO (0.01…0.02 wt.%) oxides in the equilibrium composition of the system indicates a minor oxidizing effect caused by the slag on the metal. The element content in the metal still remains within the margins of standard requirements to 15Cr11MoV steel. According to the results of viscosity and electrical conductivity measurements, a new slag composition has been proposed (ANF-39: 29…35 % CaF2, 30…36 % Al2O3, 27…32 % CaO, 2…4 % MgO, 1…3 % SiO2, TC 20.5-05416923-112: 2015), which has a wider solidification range and lower conductivity than the foreign analogue ESR 2015. The latter is a prerequisite for the reduction electricity consumption during remelting. Ref. 17, Tabl. 2, Fig. 2.
Keywords: electroslag remelting; thermodynamics of gas–slag–metal interaction; viscosity; electrical conductivity; energy-efficient slag

Received 4.02.2020


1. Mevovar, B.I., Tsykulenko, A.K., Shevtsov, V.L. et al. (1986) Metallurgy of electroslag process. Kiev, Naukova Dumka [in Russian].
2. Medovar, B.I., Shevtsov, V.L., Martyn, V.M. et al. (1988) Electroslag crucible melting and pouring of metal. Ed. by B.E. Paton. Kiev, Naukova Dumka [in Russian].
3. Medovar, L.B., Stovpchenko, A.P., Lisova, L.A., Dgiang J. (2012) Modern requirements to processes and slags of electroslag remelting. Metallurg. i Gornorudnaya Promyshlennost, 7, 297–301 [in Russian].
4. GOST 30756–2001: Fluxes for electroslag technologies. General specifications.
5. Selection of optimal flux — earnest of success in electroslag remelting (ESR). Wacker Group, Electroflux: https://www.wacker.com/h/medias/6321-RU-final-0416.pdf (appl. date 22.01.2020) [in Russian].
6. TU U 20.5-00186520-126:2018: Fused fluxes PAT NZF. Specifications: https://www.nzf.com.ua/files/production/%D0%A2%D0%A3%20%D0%A3%2020.5-00186520-126-2018.pdf
7. Stovpchenko, G., Medovar, L., Lisova, L. et al. (2012) Features of slag–metal interaction at electroslag remelting of heavy ingot. In: Proc of the 9th Int. Conf. Molten Slags, Fluxes and Salts, MOLTEN12 (Beijing, China, May 27–30, 2012), 158–159.
8. Stovpchenko, A.P., Medovar, L.B., Lisova, L.A. et al. (2012) Peculiarities of physical-chemical interactions in metal-slaggas system in electroslag remelting. Sovrem. Elektrometall., 3, 3–7 [in Russian].
9. Stovpchenko, G., Medovar, L., Gusiev, Ia., Lisova L. (2015) Novel physicochemical model of the electroslag remelting process in protective gases in application to manufacturing of a large ingot of superalloys. In: Proc. of the 2015 Int. Symp. on Liquid Metal Processing & Casting, LMPC2015 (Leoben, Austria, Sept. 20–24, 2015), 219–224.
10. Gusiev, Ia., Lisova, L., Stovpchenko, G. et al. (2016) Physico- chemical approaches for new slag evaluation for ESR of superalloys. In: Proc. of Medovar Memorial Symp., MMS100 (Kyiv, Ukraine, June 7–10, 2016), 128–131.
11. Lisova, L.O., Stovpchenko, G.P. Medovar, L.B., Petrenko, V.L. (2017) Effect of slag consumption in ESR on metal composition and process technological parameters. Sovrem. Elektrometall., 2, 3-10 [in Ukrainian]. https://doi.org/10.15407/sem2017.02.01
12. Stovpchenko G., Lisova L., Medovar L. et al. (2018) Electroslag remelting for low oxygen metal manufacturing. In: Proc. of 7th Int. Congress on Science and Technology of Steelmaking, ICS2018. The Challenge of Industry 4.0 (Venice, Italy, 13–15 June, 2018), 1–10.
13. Duckworth, W.E., Hoyle, G. (1969) Electro-slag refining. London, Chapman & Hall.
14. Latash, Yu.V., Medovar, B.I. (1970) Electroslag remelting. Moscow, Metallurgiya [in Russian].
15. HSC Chemistry 9. Outotec. https://www.outotec.ru/products-and-services/technologies/digital-solutions/hsc-chemistry/ (appl. date 20.01.2020).
16. (1982) Device for measurement of electroconductivity of melted slag. USSR author’s сert. 957081, Int. Cl. 3 G 01 N 27/02, No. 2961082/18-25 [in Russian].
17. (1979) Rotary viscosimeter. USSR author’s cert. 667867, Int. Cl. 2 G 01N 11/14, No. 2564858/18-25 [in Russian].

Advertising in this issue: