Dear Colleagues,

“The Paton Welding Journal” #08_2023 will be freely distributed from 11 to 15 September during the exhibition SCHWEISSEN & SCHNEIDEN 2023, Messe Essen, Norbertstrasse 2, Essen, Germany at the stand of the Paton Welding Institute: Hall 8 Stand 8B29.1.
You can also order this issue of the Journal in electronic form for free.
Send applications to E-mail: journal@paton.kiev.ua
Contents of the issue

2022 №02 (01) DOI of Article
2022 №02 (03)

Electrometallurgy Today 2022 #02
Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2022, #2, 10-16 pages

Mathematical modeling of evaporation processes at ebm of alloys based

S.V. Akhonin, A.Yu. Severin, V.O. Beresos, O.M. Pikulin, O.G. Erokhin

E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., Kyiv, 03150, Ukraine. E-mail: office@paton.kiev.ua

A mathematical model was developed of the processes of alloying element evaporation at cold-hearth electron beam melting of ingots of alloys based on titanium aluminide of Ti–Al–Nb–Cr–Mo alloying system that establishes the dependence of alloying element concentration in the ingot on technological parameters of melting and chemical composition of the initial charge. It is shown that the developed mathematical model adequately describes the real evaporation process at electron beam melting of titanium aluminide alloy. The regularities of alloying element evaporation at electron beam melting of alloys based on titanium aluminide of Ti–Al–Nb–Cr–Mo system were established, which allow predicting the chemical composition of the ingots and optimizing the technological parameters of melting. Ref. 21, Tabl. 2, Fig. 5. Key words: electron beam melting; ingot; evaporation; mathematical modeling; titanium aluminide; alloying elements

Received 17.02.2022


1. Clemens, H., Mayer, S. (2016) Titanium aluminides in aerospace applications - processing, microstructure and properties. Materials at High Temperatures. https://doi.org/10.1080/09603409.2016.1163792
2. Bewlay, B.P., Nag, S., Suzuki, A., Weimer, M.J. (2016) TiAl alloys in commercial aircraft engines. Ibid. https://doi.org/10.1080/09603409.2016.1183068
3. Toshimitsu Tetsui (2002) Development of a TiAl turbocharger for passenger vehicles. Materials Sci. and Eng., A329-331, 582-588. https://doi.org/10.1016/S0921-5093(01)01584-2
4. Inozemtsev, A.A., Nikhamkin, M.A., Sandratsky, V.L. (2008) Fundamentals of design of aircraft engines and power units. Moscow, Mashinostroenie, Vol. 2 [in Russian].
5. Appel, F., Paul, J.D.H., Oehring, M. (2011) Gamma titanium aluminide alloys: Science and Technology. Weinheim, Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527636204
6. Kim, Y.-W., Smarsly, W., Lin J. et al. (2014) Gamma titanium aluminide alloys: A collection of research on innovation and commercialization of gamma alloy technology. In: Proc. of 4th Intern. Symp. on Gamma TiAl Alloys, ISGTA 2014. Hoboken (NJ). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118998489
7. Leyens, C., Peters, M. (2003) Titanium and titanium alloys: Fundamentals and applications. Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/3527602119
8. Wu, X. (2006) Review of alloy and processing development of TiAl alloys. Intermetallics, 14, 1114-1122. https://doi.org/10.1016/j.intermet.2005.10.019
9. Lapin, J. (2009) TiAl-based alloys: Present status and future perspectives. Hradec nad Moravicí, Metal., 19.
10. Kablov, D.E., Panin, P.V., Shiryaev, A.A., Nochovnaya, N.A. (2014) Experience of using the vacuum-arc furnace ALD VAR L200 for melting of heat-resistant alloy ingots based on titanium aluminide. Aviatsionnye Materialy i Tekhnologii, 2, 27-33 [in Russian]. https://doi.org/10.18577/2071-9140-2014-0-2-27-33
11. Trigub, N.P., Derecha, A.Ya., Kalinyuk, A.N. et al. (1998) Refiniment of titanium in electron beam cold hearth furnaces. Problemy Spets. Elektrometallurgii, 2, 16-20 [in Russian].
12. Paton, B.E., Trigub, N.P., Akhonin, S.V., Zhuk, G.V. (2006) Electron beam melting of titanium. Kyiv, Naukova Dumka [in Russian].
13. Movchan, B.A., Akhonin, S.V. (1996) Mathematical modeling of electron beam evaporation processes of multicomponent alloy based on nickel from niobium melt. Problemy Spets. Elektrometallurgii, 3, 20-24 [in Russian].
14. Bellot, J.P., Duval, H., Ablitzer, D. (1996) Validity of the kinetic Langmuir`s law for the volatilization of metallic element in vacuum metallurgy. Proc. Symp. of Gas Interaction in Nonferrous Metals Processing (Anaheim, USA), 109-124.
15. Bellot, J.P., Duval, H., Ritchie, M., Ablitzer, D. (1999) The use of mathematical models to determine parameters minimizing the volatilization losses in the electron beam melting process. Proc. of the 9th World Conf. on Titanium (St.-Petersburg, Russia). CSIICM, Prometey, 1, 1442-1449.
16. Zhukhovitsky, A.A., Shvartsman, L.A. (1976) Physical chemistry. Moscow, Metallurgiya [in Russian].
17. Schiller, Z., Gaizing, U., Pantser, Z. (1980) Electron beam technology. Moscow, Energiya [in Russian].
18. Ivanchenko, N.V., Ustinov, A.I., Mokhort, V.A. (2003) Thermodynamic analysis of evaporation of titanium and nickel from Ti-Ni melt in vacuum. Advances in Electrometallurgy, 3, 13-16.
19. Efimov, A.I., Belorukova, L.P., Vasilkova, I.V., Chechev, V.P. (1983) Properties of inorganic compounds: Refer. Book. Leningrad, Khimiya [in Russian].
20. Akhonin, S.V., Severin, A.Yu., Berezos, V.A., Erokhin, A.G. (2013) Mathematical modelling of evaporation processes in melting of ingots of multicomponent titanium alloys in electron beam equipment with a cold hearth. Advances in Electrometallurgy, 4, 288-295.
21. Akhonin, S.V., Pikulin, A.N., Berezos, V.A. et al. (2019) Laboratory electron beam unit UE-208M. Sovrem. Elektrometall., 3, 15-22 [in Ukrainian]. https://doi.org/10.15407/sem2019.03.03

Advertising in this issue: