Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2024, #3, 21-30 pages
Development of the technolgy of producing biocompatible alloy based on zirconium‒titanium‒niobium system for medical implants
O.V. Ovchinnikov1, V.O. Berezos2, V.S. Yefanov3, D.S. Akhonin2, D.I. Mozulenko4
11JSC «Institute of Titanium». 180 Sobornyy Prosp., 69035, Zaporizhzhzia
2E.O. Paton Electric Welding Institute of the NAS of Ukraine
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: titan.paton@gmail.com
3Ukrainian State University of Science and Technology. 2 Lazaryan Str., 49010, Dnipro, Ukraine
4National University «Zaporizhzhia Polytechnic». 64 Zhukovsky Str., 69063, Zaporizhzhzia, Ukraine
Abstract
The paper gives an overview of development and application of biocompatible alloys based on zirconium, titanium and
niobium, featuring a low modulus of elasticity. The technology of producing a biocompatible 60Zr–20Ti–20Nb alloy
and semi-finished products from it in the form of rods and powders for additive manufacturing was developed, and
their structure and mechanical properties were studied. The potential for application of the developed biocompatible
60Zr–20Ti–20Nb alloy for manufacturing medical implants is shown. 15 Ref., 7 Tabl., 12 Fig.
Keywords: zirconium, titanium, niobium, biocompatible alloys, electron beam melting, technological modes, chemical
composition, structure, modulus of elasticity, mechanical properties
Received: 16.05.2024
Received in revised form: 02.07.2024
Accepted: 09.09.2024
References
1. Liu, Xuanyong, Chu, Paul K., Ding, Chuanxian (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical application. Materials Sci. and Eng.: R: Reports, 47(3), 49-121.
https://doi.org/10.1016/j.mser.2004.11.0012. Elias, C.N., Lima, J.H.C., Valiev, R., Meyers, M.A. (2008) Biomedical applications of titanium and its alloys. JOM, 60(3), 46-49. S2CID 12056136
https://doi.org/10.1007/s11837-008-0031-13. Niinomi, M. (2000) Development of high biocompatible titanium alloys. Func. Mater., 20, 36-44.
4. Fellah, Mamoun, Labaiz, Mohamed, Assala, Omar et al. (2014) Tribological behavior of Ti-6Al-4V and Ti-6Al-7Nb alloys for total hip prosthesis. Advances in Tribology, 451387.
https://doi.org/10.1155/2014/4513875. Lopez, M.F., Gutierrez, A., Jimenez, J.A. (2002) In vitro corrosion behaviour of titanium alloys without vanadium. Electrochimica Acta, 47(9), 1359-1364.
https://doi.org/10.1016/S0013-4686(01)00860-X6. Ivasyshyn, O.M., Skyba, I.O., Karasevska, O.P., Markovskyi, P.E. (2013) Biocompatible alloy with low modulus of elasticity based on zirconium-titanium system (variants). Ukraine, Pat. 102455 [in Ukrainian].
7. Niinomi, M. (2008) Mechanical biocompatibilities of titanium for biomedical applications. J. of the Mechanical Behavior of Biomedical Materials, l, 30-42.
https://doi.org/10.1016/j.jmbbm.2007.07.0018. Mishchenko, O., Ovchynnykov, O., Kapustian, O., Pogorielov, M. (2020) New Zr-Ti-Nb alloy for medical application: Development, chemical and mechanical properties, and biocompatibility. Materials, 13(6), 1306.
https://doi.org/10.3390/ma130613069. Berezos ,V.O., Akhonin, D.S. (2023) Electron beam melting of titanium alloys for medical purposes. Suchasna Elektrometal. 2, 5-13 [in Ukrainian].
https://doi.org/10.37434/sem2023.02.0110. Ladokhin, S.V., Levitsky, M.I., Chernyavsky, V.B. et al. (2007) Electron beam melting in foundry. Kyiv, Stal [in Russian].
11. Grechanyuk, N.I., Kulak, L.D., Kuzmenko, N.N. et al. (2017) Melting of ingots of Ti-Nb-Si-Zr system titanium alloys by the method of electron beam melting. Suchasna Elektrometal., 2, 17-20 [in Russian].
https://doi.org/10.15407/sem2017.02.0312. Akhonin, S., Pikulin, O., Berezos, V. et al. (2022) Determining the structure and properties of heat-resistant titanium alloys VT3-1 and VT9 obtained by electron-beam melting. Eastern-European J. of Enterprise Technologies, 5(12(119), 6-12.
https://doi.org/10.15587/1729-4061.2022.26501413. Akhonin, S.V., Pikulin, A.N., Berezos, V.A. et al. (2019) Laboratory electron beam unit UE-208M. Suchasna Elektrometal., 3, 15−22 [in Russian].
https://doi.org/10.15407/sem2019.03.0314. Ovchynnykov, O.V., Khaznaferov, M.V. (2022) Introduction to additive technologies of nonferrous metals. Kyiv, Naukova Dumka [in Ukrainian].
15. https://powdermet.com.ua/
Advertising in this issue: