Eng
Ukr
Rus
Print

2024 №04 (04) DOI of Article
10.37434/sem2024.04.05
2024 №04 (06)

Electrometallurgy Today 2024 #04
Electrometallurgy Today (Suchasna Elektrometallurgiya), 2024, #4, 29-40 pages

Structure and properties of welded joints of heat-resistant titanium alloy of the system Ti–Al–Zr–Sn–Mo–Nb–Si produced by EBW

S.V. Akhonin1, V.Yu. Bilous1, E.L. Vrzhyzhevskyi1, R.V. Selin1, I.K. Petrychenko1, S.L. Schvab1, S.L. Antonyuk2

1E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: belousvy@gmail.com
2SC «O.K. Antonov ANTK». 1 Mriya Str., 03062, Kyiv, Ukraine. E-mail: info@antonov.com

Abstract
Heat-resistant titanium-based pseudo-α-alloys have become widely applied in many sectors of modern industry, which is due to a high level of their specific mechanical properties at higher temperatures. Application of electron beam welding technology is the most rational when manufacturing parts and components from heat-resistant titanium alloys. Its special feature are high rates of cooling of the weld metal and HAZ, which complicates welding of heat-resistant titanium alloy Ti–6.5Al–5.3Zr–2.2Sn–0.6Mo–0.5Nb–0.75Si, where the high silicon content ensures lower plastic characteristics at room temperature. The influence of electron beam welding on the weld metal and HAZ structure, and on the mechanical properties of the heat-resistant titanium alloy Ti–6.5Al–5.3Zr–2.2Sn–0.6Mo–0.5Nb–0.75Si was studied. It was found that application of electron beam welding with local heat treatment at 750 °C leads to reduction of the size of packs with Widmanstatten morphology from 50…100 to 20…50 μm and increase of welded joint strength from 996 to 1041 MPa, which corresponds to base metal strength. 24 Ref., 2 Tabl., 14 Fig.
Keywords: heat-resistant titanium alloy, microstructure, mechanical properties, electron beam welding, local heat treatment

Received: 11.10.2024
Received in revised form:25.11.2024
Accepted: 12.12.2024

References

1. (2003) Titanium and titanium alloys. Fundamentals and applications. Ed. by Leyens and M. Peters. Weinheim, WILEY-VCH Verlag GmbH & Co, KGaA.
2. Ertuan Zhao, Shichen Sun, Yu Zhang (2021) Recent advances in silicon containing high temperature titanium alloys. J. of Materials Research and Technology, 14, September-October, 3029-3042. https://doi.org/10.1016/j.jmrt.2021.08.117
3. Firstov, S., Kulak, L., Miracle, D. et al. (2001) Proc. of 8th Annual Inter. Conf. on Composites Engineering ICCE/8, Aug. 5-11, Tenerife, Canary Islands, Spain. Ed. by D. Hui, 245-246.
4. Saha, R.L., Nandy, T.K., Misra, R.D.K. (1991) Microstructural changes induced by ternary additions in a hypo-eutectic titanium-silicon alloy. J. of Materials Sci., 26, 2637-2644. https://doi.org/10.1007/BF00545549
5. Firstov, S.O., Kulak.L.D., Kuzmenko, M.M., Shevchenko, O.M. (2018) Alloys of Ti-Al-Zr-Si system for high temperature operation. Fiz.-Khimich. Mekhanika Materialiv, 54(6), 30-35 [in Ukrainian]. https://doi.org/10.1007/s11003-019-00264-5
6. Shichen Sun, Hongze Fang, Yili Li et al. (2023) Formation mechanism and effect on the mechanical properties of TiSi phase for Ti-5Al-5Mo-5Cr-3Nb-2Zr alloyed by silicon. J. of Alloys and Compounds, 938(25), 168510. https://doi.org/10.1016/j.jallcom.2022.168510
7. Hong Feng, Shuzhi Zhang, Fan Peng et al. (2023) Enhanced mechanical properties of a near-α titanium alloy by tailoring the silicide precipitation behavior through severe plastic deformation. Materials Sci. and Eng., 880(26), 145356. https://doi.org/10.1016/j.msea.2023.145356
8. Wu, T., Beaven, P., Wagner, R. (1990) The Ti3 (Al, Si) + Ti5 (Si, Al)3 eutectic reaction in the Ti-Al-Si System. Scripta Metallurgica, 24, 207-212. https://doi.org/10.1016/0956-716X(90)90593-6
9. Bulanova, M., Tretyachenko, L., Golovkova M. (1997) Phase equilibria in the Ti-rich corner of the Ti-SiAl system. Zeitschrift Metallkunde, 88, 257-265.
10. Mazur, V.I., Taran, Y.N., Kapustnikova, S.V. et al. (1994) Titanium matrix composites. US Pat. No. 5366570, Nov. 22.
11. Hayat, M.D., Singh, H., He, Z., Cao, P. (2019) Titanium metal matrix composites: an overview. Pt A. Composites, 121418-121438. https://doi.org/10.1016/j.compositesa.2019.04.005
12. Akhonin, S.V., Vrzhizhevsky, E.L., Belous, V.Yu., Petrichenko, I.K. (2017) Influence of preheating parameters and local heat treatment on structure and properties of dispersion-strengthened joints of silicon-containing titanium alloys made by electron beam welding. The Paton Welding J., 7, 43-47. https://doi.org/10.15407/tpwj2017.07.09
13. Li, Y., Wang, H., Han, K. et al. (2017) Microstructure of Ti- 45Al-8.5Nb-0.2W-0.03Y electron beam welding joints. J. of Materials Proc. Technology, 250, 401-409. https://doi.org/10.1016/j.jmatprotec.2017.07.004
14. Kurashkin, S.O., Tynchenko, V.S., Seregin, Y.N. et al. (2020) The model of energy distribution during electron beam input in welding process. J. of Physics: Conf. Series, 1679(4), 042036. IOP Publishing. https://doi.org/10.1088/1742-6596/1679/4/042036
15. Seregin, Y.N., Murygin, A.V., Laptenok, V.D., Tynchenko, V.S. (2018) Modeling of electron beam distribution in electron beam welding. IOP Conf. Series: Materials Sci. and Eng., 450(3), 032036. IOP Publishing. https://doi.org/10.1088/1757-899X/450/3/032036
16. Liu, P., Zhang, G.M., Zhai, T., Feng, K.Y. (2017) Effect of treatment in weld surface on fatigue and fracture behavior of titanium alloys welded joints by vacuum electron beam welding. Vacuum, 141, 176-180. https://doi.org/10.1016/j.vacuum.2017.04.019
17. Schmidt, P. (2019) Vorteile und Besonderheiten: Elektronen Strahlschweißen von Titanbauteilen. Der Praktiker, 4, 158-162.
18. Zhao, X., Lu, X., Wang, K., He, F. (2022) Investigation on the microstructure and mechanical properties of Ti6Al4V titanium alloy electron beam welding joint. In: Proc. of the Institution of Mechanical Eng., Pt C. J. of Mechanical Eng. Sci., 236(6), 2957-2966. https://doi.org/10.1177/09544062211032988
19. Hansen, M., Kessler, H.D., McPherson, D.J. (1952) Transact. Amer. Soc. Met., 44, 518.
20. Akhonin, S., Hryhorenko, G., Berdnikova, O. et al. (2019) Fine structure of heat-resistant titanium alloys welded joints. In: Proc. of 9th Inter. Conf. on Nanomaterials: Applications & Properties (NAP-2019). September 15-20, Odessa, Ukraine. Pt 1., Sumy, Sumy State University, 1-5. https://doi.org/10.1109/NAP47236.2019.219071
21. Pederson, R., Niklasson, F., Skystedt, F., Warren, R. (2012) Microstructure and mechanical properties of friction- and electron-beam welded Ti-6Al-4V and Ti-6Al-2Sn-4Zr-6Mo. Materials Sci. and Eng., A, 552, 555-565. https://doi.org/10.1016/j.msea.2012.05.087
22. Akhonin, S.V., Berezos, V.O., Pikulin, O.M. et al. (2022) Producing high-temperature titanium alloys of Ti-Al-Zr-Si-Mo-Nb-Sn system by electron beam melting. Suchasna Elektrometal., 2, 3-9. DOI: http://doi.org/10.37434/sem2022.02.01 https://doi.org/10.37434/sem2022.02.01
23. Akhonin, S.V., Severin, A.Yu., Pikulin, O.M. et al. (2022) Structure and mechanical properties of high-temperature titanium alloy of Ti-Al-Zr-Si-Mo-Nb-Sn system after deformation treatment. Suchasna Elektrometal., 4, 43-48. https://doi.org/10.37434/sem2022.04.07
24. Akhonin, S.V., Belous, V.Yu., Selin, R.V. et al. (2018) Electron beam welding and heat treatment of welded joints of highstrength pseudo-β titanium alloy VT19. The Paton Welding J., 7, 10-14. https://doi.org/10.15407/tpwj2018.07.02

Advertising in this issue: